3,273 research outputs found

    Crystallization of medium length 1-alcohols in mesoporous silicon: An X-ray diffraction study

    Full text link
    The linear 1-alcohols n-C16H33OH, n-C17H35OH, n-C19H37OH have been imbibed and solidified in lined up, tubular mesopores of silicon with 10 nm and 15 nm mean diameters, respectively. X-ray diffraction measurements reveal a set of six discrete orientation states (''domains'') characterized by a perpendicular alignment of the molecules with respect to the long axis of the pores and by a four-fold symmetry about this direction, which coincides with the crystalline symmetry of the Si host. A Bragg peak series characteristic of the formation of bilayers indicates a lamellar structure of the spatially confined alcohol crystals in 15 nm pores. By contrast, no layering reflections could be detected for 10 nm pores. The growth mechanism responsible for the peculiar orientation states is attributed to a nano-scale version of the Bridgman technique of single-crystal growth, where the dominant growth direction is aligned parallelly to the long pore axes. Our observations are analogous to the growth phenomenology encountered for medium length n-alkanes confined in mesoporous silicon (Phys. Rev. E 75, 021607 (2007)) and may further elucidate why porous silicon matrices act as an effective nucleation-inducing material for protein solution crystallization.Comment: 4 pages, 4 figures, to appear as a Brief Report in Physical Review

    Ultrafast Dynamics of Carrier Multiplication in Quantum Dots

    Full text link
    A quantum-kinetic approach to the ultrafast dynamics of carrier multiplication in semiconductor quantum dots is presented. We investigate the underlying dynamics in the electronic subband occupations and the time-resolved optical emission spectrum, focusing on the interplay between the light-matter and the Coulomb interaction. We find a transition between qualitatively differing behaviors of carrier multiplication, which is controlled by the ratio of the interaction induced time scale and the pulse duration of the exciting light pulse. On short time scales, i.e., before intra-band relaxation, this opens the possibility of detecting carrier multiplication without refering to measurements of (multi-)exciton lifetimes.Comment: 12 pages, 7 figures, submitte

    Preferred orientation of n-hexane crystallized in silicon nanochannels: A combined x-ray diffraction and sorption isotherm study

    Full text link
    We present an x-ray diffraction study on n-hexane in tubular silicon channels of approximately 10 nm diameter both as a function of the filling fraction f of the channels and as a function of temperature. Upon cooling, confined n-hexane crystallizes in a triclinic phase typical of the bulk crystalline state. However, the anisotropic spatial confinement leads to a preferred orientation of the confined crystallites, where the crystallographic direction coincides with the long axis of the channels. The magnitude of this preferred orientation increases with the filling fraction, which corroborates the assumption of a Bridgman-type crystallization process being responsible for the peculiar crystalline texture. This growth process predicts for a channel-like confinement an alignment of the fastest crystallization direction parallel to the long channel axis. It is expected to be increasingly effective with the length of solidifying liquid parcels and thus with increasing f. In fact, the fastest solidification front is expected to sweep over the full silicon nanochannel for f=1, in agreement with our observation of a practically perfect texture for entirely filled nanochannels

    Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study

    Full text link
    The optical birefringence of liquid n-hexane condensed in an array of parallel silica channels of 7nm diameter and 400 micrometer length is studied as a function of filling of the channels via the vapor phase. By an analysis with the generalized Bruggeman effective medium equation we demonstrate that such measurements are insensitive to the detailed geometrical (positional) arrangement of the adsorbed liquid inside the channels. However, this technique is particularly suitable to search for any optical anisotropies and thus collective orientational order as a function of channel filling. Nevertheless, no hints for such anisotropies are found in liquid n-hexane. The n-hexane molecules in the silica nanochannels are totally orientationally disordered in all condensation regimes, in particular in the film growth as well as in the the capillary condensed regime. Thus, the peculiar molecular arrangement found upon freezing of liquid n-hexane in nanochannel-confinement, where the molecules are collectively aligned perpendicularly to the channels' long axes, does not originate in any pre-alignment effects in the nanoconfined liquid due to capillary nematization.Comment: 7 pages, 5 figure

    Modelling categorical covariates in Bayesian disease mapping by partition structures

    Get PDF
    We consider the problem of mapping the risk from a disease using a series of regional counts of observed and expected cases, and information on potential risk factors. To analyse this problem from a Bayesian viewpoint we propose a methodology, which extends a spatial partition model by including categorical covariate information. Such an extension allows to detect clusters in the residual variation, reflecting further, possibly unobserved, covariates. The methodology is implemented by means of reversible jump Markov chain Monte Carlo sampling. An application is presented, in order to illustrate and compare our proposed extensions with a purely spatial partition model. Here we analyse a well-known dataset on lip cancer incidence in Scotland

    Exploring Outliers in Crowdsourced Ranking for QoE

    Full text link
    Outlier detection is a crucial part of robust evaluation for crowdsourceable assessment of Quality of Experience (QoE) and has attracted much attention in recent years. In this paper, we propose some simple and fast algorithms for outlier detection and robust QoE evaluation based on the nonconvex optimization principle. Several iterative procedures are designed with or without knowing the number of outliers in samples. Theoretical analysis is given to show that such procedures can reach statistically good estimates under mild conditions. Finally, experimental results with simulated and real-world crowdsourcing datasets show that the proposed algorithms could produce similar performance to Huber-LASSO approach in robust ranking, yet with nearly 8 or 90 times speed-up, without or with a prior knowledge on the sparsity size of outliers, respectively. Therefore the proposed methodology provides us a set of helpful tools for robust QoE evaluation with crowdsourcing data.Comment: accepted by ACM Multimedia 2017 (Oral presentation). arXiv admin note: text overlap with arXiv:1407.763

    Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits

    Full text link
    Creation of entanglement is considered theoretically and numerically in an ensemble of spin chains with dipole-dipole interaction between the spins. The unwanted effect of the long-range dipole interaction is compensated by the optimal choice of the parameters of radio-frequency pulses implementing the protocol. The errors caused by (i) the influence of the environment,(ii) non-selective excitations, (iii) influence of different spin chains on each other, (iv) displacements of qubits from their perfect locations, and (v) fluctuations of the external magnetic field are estimated analytically and calculated numerically. For the perfectly entangled state the z component, M, of the magnetization of the whole system is equal to zero. The errors lead to a finite value of M. If the number of qubits in the system is large, M can be detected experimentally. Using the fact that M depends differently on the parameters of the system for each kind of error, varying these parameters would allow one to experimentally determine the most significant source of errors and to optimize correspondingly the quantum computer design in order to decrease the errors and M. Using our approach one can benchmark the quantum computer, decrease the errors, and prepare the quantum computer for implementation of more complex quantum algorithms.Comment: 31 page

    Low dimensional ordering and fluctuations in methanol-β\beta-hydroquinone-clathrate studied by X-ray and neutron diffraction

    Full text link
    Methanol-β\beta-hydroquinone-clathrate has been established as a model system for dielectric ordering and fluctuations and is conceptually close to magnetic spin systems. In X-ray and neutron diffraction experiments, we investigated the ordered structure, the one-dimensional (1D) and the three-dimensional (3D) critical scattering in the paraelectric phase, and the temperature dependence of the lattice constants. Our results can be explained by microscopic models of the methanol pseudospin in the hydroquinone cage network, in consistency with previous dielectric investigations
    corecore