806 research outputs found

    A General-Equilibrium Analysis of Public Policy for Pharmaceutical Prices

    Get PDF
    Retail sales of prescription drugs totaled 154.5billionin2001.TheNationalInstituteforHealthCareManagementestimatesannualsaleswillexceed154.5 billion in 2001. The National Institute for Health Care Management estimates annual sales will exceed 400 billion by the year 2010. This paper analyzes the welfare and distributional effects of two policy families that could be used to cope with high and rising pharmaceutical costs. We employ a general-equilibrium approach to contrast the current patented-monopoly system with a) a price ceiling imposed on the pharmaceutical sector of the economy; and b) a universal insurance program covering pharmaceutical purchases. We use a version of the Kelton and Wallace (1995) monopoly production environment: a two-good general-equilibrium model in which a license is required to produce one of the goods. Individuals in the model are heterogeneous with respect to preferences, but have identical production technologies and labor resources. Results indicate potential welfare gains for both the price-ceiling and universal-insurance policies, with very distinct distributional effects.

    Scaling properties of critical bubble of homogeneous nucleation in stretched fluid of square-gradient density-functional model with triple-parabolic free energy

    Full text link
    The square-gradient density-functional model with triple-parabolic free energy is used to study homogeneous bubble nucleation in a stretched liquid to check the scaling rule for the work of formation of the critical bubble as a function of scaled undersaturation Δμ/Δμspin\Delta\mu/\Delta\mu_{\rm spin}, the difference in chemical potential Δμ\Delta\mu between the bulk undersaturated and saturated liquid divided by Δμspin\Delta\mu_{\rm spin} between the liquid spinodal and saturated liquid. In contrast to our study, a similar density-functional study for a Lennard-Jones liquid by Shen and Debenedetti [J. Chem. Phys. {\bf 114}, 4149 (2001)] found that not only the work of formation but other various quantities related to the critical bubble show the scaling rule, however, we found virtually no scaling relationships in our model near the coexistence. Although some quantities show almost perfect scaling relations near the spinodal, the work of formation divided by the value deduced from the classical nucleation theory shows no scaling in this model even though it correctly vanishes at the spinodal. Furthermore, the critical bubble does not show any anomaly near the spinodal as predicted many years ago. In particular, our model does not show diverging interfacial width at the spinodal, which is due to the fact that compressibility remains finite until the spinodal is reached in our parabolic models.Comment: 10 pages, 10 figures, Journal of Chemical Physics accepted for publicatio

    Is the Web ready for HTTP/2 Server Push?

    Full text link
    HTTP/2 supersedes HTTP/1.1 to tackle the performance challenges of the modern Web. A highly anticipated feature is Server Push, enabling servers to send data without explicit client requests, thus potentially saving time. Although guidelines on how to use Server Push emerged, measurements have shown that it can easily be used in a suboptimal way and hurt instead of improving performance. We thus tackle the question if the current Web can make better use of Server Push. First, we enable real-world websites to be replayed in a testbed to study the effects of different Server Push strategies. Using this, we next revisit proposed guidelines to grasp their performance impact. Finally, based on our results, we propose a novel strategy using an alternative server scheduler that enables to interleave resources. This improves the visual progress for some websites, with minor modifications to the deployment. Still, our results highlight the limits of Server Push: a deep understanding of web engineering is required to make optimal use of it, and not every site will benefit.Comment: More information available at https://push.netray.i

    Crystal Nucleation of Colloidal Suspensions under Shear

    Get PDF
    We use Brownian Dynamics simulations in combination with the umbrella sampling technique to study the effect of shear flow on homogeneous crystal nucleation. We find that a homogeneous shear rate leads to a significant suppression of the crystal nucleation rate and to an increase of the size of the critical nucleus. A simple, phenomenological extension of classical nucleation theory accounts for these observations. The orientation of the crystal nucleus is tilted with respect to the shear direction.Comment: 4 pages, 3 figures, Submitted to Phys. Rev. Let

    Detection of hidden structures on all scales in amorphous materials and complex physical systems: basic notions and applications to networks, lattice systems, and glasses

    Full text link
    Recent decades have seen the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of possible contending atomic- and larger-scale configurations and the intricate correlations between their constituents. For a detailed understanding, there is a need for tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method by invoking ideas from network analysis and information theory. Our method efficiently identifies basic unit cells and topological defects in systems with low disorder and may analyze general amorphous structures to identify candidate natural structures where a clear definition of order is lacking. This general unbiased detection of physical structure does not require a guess as to which of the system properties should be deemed as important and may constitute a natural point of departure for further analysis. The method applies to both static and dynamic systems.Comment: (23 pages, 9 figures

    Steady-state nucleation rate and flux of composite nucleus at saddle point

    Full text link
    The steady-state nucleation rate and flux of composite nucleus at the saddle point is studied by extending the theory of binary nucleation. The Fokker-Planck equation that describes the nucleation flux is derived using the Master equation for the growth of the composite nucleus, which consists of the core of the final stable phase surrounded by a wetting layer of the intermediate metastable phase nucleated from a metastable parent phase recently evaluated by the author [J. Chem. Phys. {\bf 134}, 164508 (2011)]. The Fokker-Planck equation is similar to that used in the theory of binary nucleation, but the non-diagonal elements exist in the reaction rate matrix. First, the general solution for the steady-state nucleation rate and the direction of nucleation flux is derived. Next, this information is then used to study the nucleation of composite nucleus at the saddle point. The dependence of steady-state nucleation rate as well as the direction of nucleation flux on the reaction rate in addition to the free-energy surface is studied using a model free-energy surface. The direction of nucleation current deviates from the steepest-descent direction of the free-energy surface. The results show the importance of two reaction rate constants: one from the metastable environment to the intermediate metastable phase and the other from the metastable intermediate phase to the stable new phase. On the other hand, the gradient of the potential Φ\Phi or the Kramers crossover function (the commitment or splitting probability) is relatively insensitive to reaction rates or free-energy surface.Comment: 12 pages, 6 figures, to be published in Journal of Chemical Physic

    Crystallization Mechanism of Hard Sphere Glasses

    Get PDF
    In supercooled liquids, vitrification generally suppresses crystallization. Yet some glasses can still crystallize despite the arrest of diffusive motion. This ill-understood process may limit the stability of glasses, but its microscopic mechanism is not yet known. Here we present extensive computer simulations addressing the crystallization of monodisperse hard-sphere glasses at constant volume (as in a colloid experiment). Multiple crystalline patches appear without particles having to diffuse more than one diameter. As these patches grow, the mobility in neighbouring areas is enhanced, creating dynamic heterogeneity with positive feedback. The future crystallization pattern cannot be predicted from the coordinates alone: crystallization proceeds by a sequence of stochastic micro-nucleation events, correlated in space by emergent dynamic heterogeneity.Comment: 4 pages 4 figures Accepted for publication in Phys. Rev. Lett., April 201

    Classical Nucleation Theory of the One-Component Plasma

    Full text link
    We investigate the crystallization rate of a one-component plasma (OCP) in the context of classical nucleation theory. From our derivation of the free energy of an arbitrary distribution of solid clusters embedded in a liquid phase, we derive the steady-state nucleation rate of an OCP as a function of the Coulomb coupling parameter. Our result for the rate is in accord with recent molecular dynamics simulations, but it is greater than that of previous analytical estimates by many orders of magnitude. Further molecular dynamics simulations of the nucleation rate of a supercooled liquid OCP for several values of the coupling parameter would clarify the physics of this process.Comment: 6 pages, 1 figure, accepted by PR

    Using NAICS to Identify National Industry Cluster Templates for Applied Regional Analysis

    Get PDF
    Whereas FESER and BERGMAN, 2000, developed the concept of national-level cluster templates and introduced a systematic methodology to identify such clusters, their technique and results were based on the now-outdated Standard Industrial Classification (SIC) system for categorizing industries. We update their results using the 1997 Benchmark Input-Output Accounts for the United States, which are based on the North American Industry Classification System (NAICS). Since the treatment of services is much more comprehensive under NAICS, we are able to expand on the Feser and Bergman manufacturing templates to identify more comprehensive mixed-sector templates. The cluster templates we determine can provide a foundation for regional economic development strategies.

    Major shifts in nutrient and phytoplankton dynamics in the North Pacific Subtropical Gyre over the last 5000 years revealed by high-resolution proteinaceous deep-sea coral δ\u3csup\u3e15\u3c/sup\u3eN and δ\u3csup\u3e13\u3c/sup\u3eC records

    Get PDF
    The North Pacific Subtropical Gyre (NPSG) is the largest continuous ecosystem on Earth and is a critical component of global oceanic biogeochemical cycling and carbon sequestration. We report here multi-millennial-scale, sub-decadal-resolution records of bulk stable nitrogen (δ15N) and carbon (δ13C) isotope records from proteinaceous deep-sea corals. Data from three Kulamanamana haumeaae specimens from the main Hawaiian Islands extend the coral-based time-series back ∼5000 yrs for the NPSG and bypass constraints of low resolution sediment cores in this oligotrophic ocean region. We interpret these records in terms of shifting biogeochemical cycles and plankton community structure, with a main goal of placing the extraordinarily rapid ecosystem biogeochemical changes documented by recent coral records during the Anthropocene in a context of broader Late-Holocene variability. During intervals where new data overlaps with previous records, there is strong correspondence in isotope values, indicating that this older data represents a direct extension of Anthropocene records. These results reveal multiple large isotopic shifts in both δ15N and δ13C values similar to or larger in magnitude to those reported in the last 150 yrs. This shows that large fluctuations in the isotopic composition of export production in this region are not unique to the recent past, but have occurred multiple times through the Mid- to Late-Holocene. However, these earlier isotopic shifts occurred over much longer time intervals (∼millennial vs. decadal timescales). Further, the δ15N data confirm that the extremely low present day δ15N values recorded by deep sea corals (∼8‰) are unprecedented for the NPSG, at least within the past five millennia. Together these records reveal centennial to millennial-scale oscillations in NPSG biogeochemical cycles. Further, these data also suggest a number of independent biogeochemical regimes during which δ15N and δ13C trends were synchronous (similar to recent coral records) or distinctly decoupled. We propose that phytoplankton species composition and nutrient source changes are the dominant mechanisms controlling the coupling and de-coupling of δ15N and δ13C values, likely primarily influenced by changing oceanographic conditions (e.g., stratification vs. entrainment). The decoupling observed in the past further suggests that oceanographic forcing and ecosystem responses controlling δ15N and δ13C values of export production have been substantially different earlier in the Holocene compared to mechanisms controlling the present day system
    • …
    corecore