22 research outputs found

    Rancang Bangun Aplikasi Augmented Reality sebagai Media Promosi Model Tatanan Rambut pada Barbershop Berbasis Android

    Full text link
    The development of barbershop makes business competition becomes increasingly tight. Currently, information and communication technology is very important in the field of barbershop marketing. But this technology only shows details of the existence of barbershop. In addition, the catalog of hairstyles that are provided only in the form of 2-dimensional images. Therefore, more advanced technology is needed to promote the model of hairstyle available in barbershop. One of the technology applied in smartphone applications is Augmented Reality on the Android operating system. In this research will be developed an Augmented Reality based promotion media to promote hair model model with 3 dimensional object visualization using marker based tracking method. Development of this application starts from the stage of concept creation, application design, 3-dimensional object creation, application assembly, application testing, until the application distribution stage. This application was created using C # programming language, Vuforia Qualcomm, virtual and Unity Autodeks Maya software. The application that has been produced is tested by 2 methods that is by black-box testing and by USAbility scale system test, on the test of black -box AugmentedReality application of functional barbershop that exist in the application has been successfully executed according to their respective function. Based on survey results on Usabilty ScaleSystem(SUS) test on Augmented Reality Barbershop application, 20 respondents gave average score of 73.35 with Grade Scale C

    Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology.

    Get PDF
    Adenoviruses (AdVs) are used as gene therapy vectors to treat human diseases and as vaccines against COVID-19. AdVs are produced by transfecting human embryonic kidney 239 (HEK293) or PER.C6 virus producer cells with AdV plasmid vectors or infecting these cells withcell lysates containing replication-defective AdV. Cell lysates can be purified further by caesium chloride or chromatographic protocols to research virus seed stocks (RVSS) for characterisation to high quality master virus seed stocks (MVSS) and working virus seed stocks (WVSS) before downstream production of pure, high titre AdV. Lysates are poorly infectious, block filtration columns and have limited storage capability. Aqueous two-phase systems (ATPS) are an alternative method for AdV purification that rapidly generates cleaner RVSS for characterisation to MVSS. After testing multiple ATPS formulations, an aqueous mixture of 20 % PEG 600 and 20 % (NH4)2SO4 (w/w) was found most effective for AdV partitioning, producing up to 97+3% yield of high-titre virus that was devoid of aggregates both effective in vitro and in vivo with no observable cytotoxicity. Importantly, AdV preparations stored at −20 °C or 4 °C show negligible loss of titre and are suitable for downstream processing to clinical grade to support the need for AdV vaccines

    Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease

    Full text link
    Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X‐linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg^{tm1Wbrg}), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno‐associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease

    Systemic gene therapy rescues retinal dysfunction and hearing loss in a model of Norrie disease

    Get PDF
    Deafness affects 5% of the world's population, yet there is a lack of treatments to prevent hearing loss due to genetic causes. Norrie disease is a recessive X-linked disorder, caused by NDP gene mutation. It manifests as blindness at birth and progressive sensorineural hearing loss, leading to debilitating dual sensory deprivation. To develop a gene therapy, we used a Norrie disease mouse model (Ndptm1Wbrg ), which recapitulates abnormal retinal vascularisation and progressive hearing loss. We delivered human NDP cDNA by intravenous injection of adeno-associated viral vector (AAV)9 at neonatal, juvenile and young adult pathological stages and investigated its therapeutic effects on the retina and cochlea. Neonatal treatment prevented the death of the sensory cochlear hair cells and rescued cochlear disease biomarkers as demonstrated by RNAseq and physiological measurements of auditory function. Retinal vascularisation and electroretinograms were restored to normal by neonatal treatment. Delivery of NDP gene therapy after the onset of the degenerative inner ear disease also ameliorated the cochlear pathology, supporting the feasibility of a clinical treatment for progressive hearing loss in people with Norrie disease

    Rapid and inexpensive purification of adenovirus vectors using an optimised aqueous two-phase technology

    Get PDF
    Copyright © 2021 The Author(s). Adenoviruses (AdVs) are used as gene therapy vectors to treat human diseases and as vaccines against COVID-19. AdVs are produced by transfecting human embryonic kidney 239 (HEK293) or PER.C6 virus producer cells with AdV plasmid vectors or infecting these cells withcell lysates containing replication-defective AdV. Cell lysates can be purified further by caesium chloride or chromatographic protocols to research virus seed stocks (RVSS) for characterisation to high quality master virus seed stocks (MVSS) and working virus seed stocks (WVSS) before downstream production of pure, high titre AdV. Lysates are poorly infectious, block filtration columns and have limited storage capability. Aqueous two-phase systems (ATPS) are an alternative method for AdV purification that rapidly generates cleaner RVSS for characterisation to MVSS. After testing multiple ATPS formulations, an aqueous mixture of 20 % PEG 600 and 20 % (NH4)2SO4 (w/w) was found most effective for AdV partitioning, producing up to 97+3% yield of high-titre virus that was devoid of aggregates both effective in vitro and in vivo with no observable cytotoxicity. Importantly, AdV preparations stored at −20 °C or 4 °C show negligible loss of titre and are suitable for downstream processing to clinical grade to support the need for AdV vaccines.Brunel University London Brief award

    Ascending Vaginal Infection Using Bioluminescent Bacteria Evokes Intrauterine Inflammation, Preterm Birth and Neonatal Brain Injury in Pregnant Mice

    Get PDF
    Preterm birth is a serious global health problem and the leading cause of infant death before 5 years of age. At least 40% of cases are associated with infection. The most common way for pathogens to access the uterine cavity is by ascending from the vagina. Bioluminescent pathogens have revolutionized the understanding of infectious diseases. We hypothesized that bioluminescent Escherichia coli can be used to track and monitor ascending vaginal infections. Two bioluminescent strains were studied: E. coli K12 MG1655-lux, a nonpathogenic laboratory strain, and E. coli K1 A192PP-lux2, a pathogenic strain capable of causing neonatal meningitis and sepsis in neonatal rats. On embryonic day 16, mice received intravaginal E. coli K12, E. coli K1, or phosphate-buffered saline followed by whole-body bioluminescent imaging. In both cases, intravaginal delivery of E. coli K12 or E. coli K1 led to bacterial ascension into the uterine cavity, but only E. coli K1 induced preterm parturition. Intravaginal administration of E. coli K1 significantly reduced the proportion of pups born alive compared with E. coli K12 and phosphate-buffered saline controls. However, in both groups of viable pups born after bacterial inoculation, there was evidence of comparable brain inflammation by postnatal day 6. This study ascribes specific mechanisms by which exposure to intrauterine bacteria leads to premature delivery and neurologic inflammation in neonates

    Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer

    Get PDF
    Argininosuccinate lyase (ASL) belongs to the hepatic urea cycle detoxifying ammonia, and the citrulline-nitric oxide (NO) cycle producing NO. ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia, multiorgan disease and neurocognitive impairment despite treatment aiming to normalise ammonaemia without considering NO imbalance. Here we show that cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress independent of hyperammonaemia. Intravenous injection of AAV8 vector into adult or neonatal ASL-deficient mice demonstrates long-term correction of the hepatic urea cycle and the cerebral citrulline-NO cycle, respectively. Cerebral disease persists if ammonaemia only is normalised but is dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This correlates with behavioural improvement and reduced cortical cell death. Thus, neuronal oxidative/nitrosative stress is a distinct pathophysiological mechanism from hyperammonaemia. Disease amelioration by simultaneous brain and liver gene transfer with one vector, to treat both metabolic pathways, provides new hope for hepatocerebral metabolic diseases

    Problem drug use the public health imperative: what some of the literature says

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With more than 200,000 problem drug users is contact with structured treatment services in England the public health imperative behind drug treatment is great. Problem drug use for many is a chronic and relapsing condition, where "cure" is often neither a reasonable or appropriate expectation and it can further be argued that in these circumstances problem drug use is no different from any number of chronic and enduring health conditions that are managed in the health care system and therefore should be conceptualised as such.</p> <p>Discussion</p> <p>A public health approach to drug treatment emphasises the need for drug users in or accessing treatment, to reduce their harmful drug use, reduce drug use related risks such as sepsis and overdose and stay alive for longer. However a public health perspective in relation to problem drug use isn't always either apparent or readily understood and to that end there is still a significant need to continue the arguments and debate that treatment and interventions for problem and dependent drug users need to extend beyond an individualistic approach. For the purposes of discussion in this article public and population health will be used interchangeably.</p> <p>Summary</p> <p>A recognition and acceptance that a public and population health approach to the management of problem drug users is sound public health policy also then requires a long term commitment in terms of staffing and resources where service delivery mirrors that of chronic condition management.</p
    corecore