3,259 research outputs found

    Ultra-discrete Optimal Velocity Model: a Cellular-Automaton Model for Traffic Flow and Linear Instability of High-Flux Traffic

    Full text link
    In this paper, we propose the ultra-discrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultra-discrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the mKdV equation, a soliton equation. Meanwhile, the ultra-discrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations, and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.Comment: 9 pages, 6 figure

    Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring

    Full text link
    In this paper, we study an exact solution of the asymmetric simple exclusion process on a periodic lattice of finite sites with two typical updates, i.e., random and parallel. Then, we find that the explicit formulas for the partition function and the average velocity are expressed by the Gauss hypergeometric function. In order to obtain these results, we effectively exploit the recursion formula for the partition function for the zero-range process. The zero-range process corresponds to the asymmetric simple exclusion process if one chooses the relevant hop rates of particles, and the recursion gives the partition function, in principle, for any finite system size. Moreover, we reveal the asymptotic behaviour of the average velocity in the thermodynamic limit, expanding the formula as a series in system size.Comment: 10 page

    A Canonical Approach to the Quantization of the Damped Harmonic Oscillator

    Full text link
    We provide a new canonical approach for studying the quantum mechanical damped harmonic oscillator based on the doubling of degrees of freedom approach. Explicit expressions for Lagrangians of the elementary modes of the problem, characterising both forward and backward time propagations are given. A Hamiltonian analysis, showing the equivalence with the Lagrangian approach, is also done. Based on this Hamiltonian analysis, the quantization of the model is discussed.Comment: Revtex, 6 pages, considerably expanded with modified title and refs.; To appear in J.Phys.

    Self-magnetic compensation and Exchange Bias in ferromagnetic Samarium systems

    Full text link
    For Sm(3+) ions in a vast majority of metallic systems, the following interesting scenario has been conjured up for long, namely, a magnetic lattice of tiny self (spin-orbital) compensated 4f-moments exchange coupled (and phase reversed) to the polarization in the conduction band. We report here the identification of a self-compensation behavior in a variety of ferromagnetic Sm intermetallics via the fingerprint of a shift in the magnetic hysteresis (M-H) loop from the origin. Such an attribute, designated as exchange bias in the context of ferromagnetic/antiferromagnetic multilayers, accords these compounds a potential for niche applications in spintronics. We also present results on magnetic compensation behavior on small Gd doping (2.5 atomic percent) in one of the Sm ferromagnets (viz. SmCu(4)Pd). The doped system responds like a pseudo-ferrimagnet and it displays a characteristic left-shifted linear M-H plot for an antiferromagnet.Comment: 7 pages and 7 figure

    Hamiltonian formalism in Friedmann cosmology and its quantization

    Full text link
    We propose a Hamiltonian formalism for a generalized Friedmann-Roberson-Walker cosmology model in the presence of both a variable equation of state (EOS) parameter w(a)w(a) and a variable cosmological constant Λ(a)\Lambda(a), where aa is the scale factor. This Hamiltonian system containing 1 degree of freedom and without constraint, gives Friedmann equations as the equation of motion, which describes a mechanical system with a variable mass object moving in a potential field. After an appropriate transformation of the scale factor, this system can be further simplified to an object with constant mass moving in an effective potential field. In this framework, the Λ\Lambda cold dark matter model as the current standard model of cosmology corresponds to a harmonic oscillator. We further generalize this formalism to take into account the bulk viscosity and other cases. The Hamiltonian can be quantized straightforwardly, but this is different from the approach of the Wheeler-DeWitt equation in quantum cosmology.Comment: 7 pages, no figure; v2: matches the version accepted by PR

    High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes

    Full text link
    We present the results of high precision measurements of the thermal expansion of the sintered SiC, SiC-100, intended for use in cryogenic space-telescopes, in which minimization of thermal deformation of the mirror is critical and precise information of the thermal expansion is needed for the telescope design. The temperature range of the measurements extends from room temperature down to \sim 10 K. Three samples, #1, #2, and #3 were manufactured from blocks of SiC produced in different lots. The thermal expansion of the samples was measured with a cryogenic dilatometer, consisting of a laser interferometer, a cryostat, and a mechanical cooler. The typical thermal expansion curve is presented using the 8th order polynomial of the temperature. For the three samples, the coefficients of thermal expansion (CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were derived for temperatures between 293 K and 10 K. The average and the dispersion (1 σ\sigma rms) of these three CTEs are 0.816 and 0.002 (×106\times 10^{-6}/K), respectively. No significant difference was detected in the CTE of the three samples from the different lots. Neither inhomogeneity nor anisotropy of the CTE was observed. Based on the obtained CTE dispersion, we performed an finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m diameter cryogenic mirror made of six SiC-100 segments. It was shown that the present CTE measurement has a sufficient accuracy well enough for the design of the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure

    Caldirola-Kanai Oscillator in Classical Formulation of Quantum Mechanics

    Full text link
    The quadrature distribution for the quantum damped oscillator is introduced in the framework of the formulation of quantum mechanics based on the tomography scheme. The probability distribution for the coherent and Fock states of the damped oscillator is expressed explicitly in terms of Gaussian and Hermite polynomials, correspondingly.Comment: LaTeX, 5 pages, 1 Postscript figure, Contribution to the VIII International Conference on Symmetry Methods in Physics, Dubna 1997, to be published in the Proceedings of the Conferenc

    Mesoscopic circuits with charge discreteness:quantum transmission lines

    Full text link
    We propose a quantum Hamiltonian for a transmission line with charge discreteness. The periodic line is composed of an inductance and a capacitance per cell. In every cell the charge operator satisfies a nonlinear equation of motion because of the discreteness of the charge. In the basis of one-energy per site, the spectrum can be calculated explicitly. We consider briefly the incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.

    Level-of-Detail Triangle Strips for Deforming Meshes

    Get PDF
    Applications such as video games or movies often contain deforming meshes. The most-commonly used representation of these types of meshes consists in dense polygonal models. Such a large amount of geometry can be efficiently managed by applying level-of-detail techniques and specific solutions have been developed in this field. However, these solutions do not offer a high performance in real-time applications. We thus introduce a multiresolution scheme for deforming meshes. It enables us to obtain different approximations over all the frames of an animation. Moreover, we provide an efficient connectivity coding by means of triangle strips as well as a flexible framework adapted to the GPU pipeline. Our approach enables real-time performance and, at the same time, provides accurate approximations

    Unitary relations in time-dependent harmonic oscillators

    Get PDF
    For a harmonic oscillator with time-dependent (positive) mass and frequency, an unitary operator is shown to transform the quantum states of the system to those of a harmonic oscillator system of unit mass and time-dependent frequency, as well as operators. For a driven harmonic oscillator, it is also shown that, there are unitary transformations which give the driven system from the system of same mass and frequency without driving force. The transformation for a driven oscillator depends on the solution of classical equation of motion of the driven system. These transformations, thus, give a simple way of finding exact wave functions of a driven harmonic oscillator system, provided the quantum states of the corresponding system of unit mass are given.Comment: Submitted to J. Phys.
    corecore