5 research outputs found

    Materials for Pharmaceutical Dosage Forms: Molecular Pharmaceutics and Controlled Release Drug Delivery Aspects

    Get PDF
    Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development

    Development and In Vitro/In Vivo Evaluation of Etodolac Controlled Porosity Osmotic Pump Tablets

    No full text
    The aim of the current work was the design and evaluation of etodolac controlled porosity osmotic pump (CPOP) tablets exhibiting zero-order release kinetics. Variables influencing the design of (1) core tablets viz., (a) osmogent type (sodium chloride, potassium chloride, mannitol, and fructose) and (b) drug/osmogent ratio (1:0.25, 1:0.50, and 1:0.75), and (2) CPOP tablets viz., (a) coating solution composition, (b) weight gain percentage (1–5%, w/w), and (c) pore former concentration (5%, 10%, and 20%, v/v), were investigated. Statistical analysis and kinetic modeling of drug release data were estimated. Fructose-containing core tablets showed significantly (P < 0.05) more retarded drug release rates. An inverse correlation was observed between drug/fructose ratio and drug release rate. Coating of the optimum core tablets (F4) with a mixture of cellulose acetate solution (3%, w/v), diethyl phthalate, and polyethylene glycol 400 (85:10:5, v/v, respectively) till a 4% w/w weight gain enabled zero-order sustained drug delivery over 24 h. Scanning electron microscopy micrographs of coating membrane confirmed pore formation upon contact with dissolution medium. When compared to the commercial immediate-release Napilac® capsules, the optimum CPOP tablets (F4–34) provided enhanced bioavailability and extended duration of effective etodolac plasma concentration with minimum expected potential for side effects in healthy volunteers

    Formulation and Evaluation of a Protein-loaded Solid Dispersions by Non-destructive Methods

    No full text
    The purpose of this investigation was to develop solid dispersion (SD) formulation of cyclosporine (CyA) using polyethylene glycol (PEG-6000) to enhance its dissolution rate followed by nondestructive method for the prediction of both drug and carrier. SD formulations were prepared by varying the ratio of CyA and PEG-6000 by solvent evaporation technique and characterized by dissolution, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD), near infrared (NIR) and near infrared chemical imaging (NIR-CI). Dissolution data revealed enhanced dissolution of CyA when compared with pure CyA. DSC results showed that the crystallinity of PEG-6000 has decreased as indicated by decrease in the enthalpy of fusion and melting peak in the formulations. FTIR data demonstrated no chemical interaction between drug and carrier. The surface morphology of SD formulations was similar to PEG-6000 particle. NIR-CI disclosed homogeneity of SD matrix as indicated by symmetrical histograms with smaller values of skewness. Similar to NIR, a multivariate peak evaluation with principal component analysis and partial least square (PLS) were carried out with PXRD spectral data. PLS models with both techniques showed good correlation coefficient and smaller value of root mean square of errors. The accuracy of model for predicting CyA and PEG-6000 in NIR and PXRD data were 5.22%, 5.35%, 5.27%, and 2.10%, respectively. In summary, chemometric applications of non-destructive method sensors provided a valuable means of characterization and estimation of drug and carrier in the novel formulations
    corecore