732 research outputs found

    Identification and Localization of Three Classes of Myosins in Pollen Tubes of \u3ci\u3eLilium longiflorum\u3c/i\u3e and \u3ci\u3eNicotiana alata\u3c/i\u3e

    Get PDF
    The presence and localization of actin and myosin have been examined in pollen tubes of Lilium longiflorum and Nicotiana alata. Immunoblot analysis of pollen tube extracts with antibodies to actin, myosins IA and IB, myosin II, and myosin V reveals the presence of these contractile proteins. Immunofluorescence microscopy using various methods to preserve the pollen tubes; chemical fixation, rapid freeze fixation and freeze substitution (RF-FS) followed by rehydration or by embeddment in a methacrylate mixture, was performed to optimize preservation. Immunocytochemistry reaffirmed that actin is localized longitudinally in the active streaming lanes and near the cortical surface of the pollen tube. Myosin I was localized to the plasma membrane, larger organelles, the surface of the generative cell and the vegetative nucleus, whereas, myosin V was found in the vegetative cytoplasm in a punctate fashion representing smaller organelles. Myosin II subfragment 1 and light meromyosin were localized in a punctate fashion on the larger organelles throughout the vegetative cytoplasm. In addition, isolated generative cells and vegetative nuclei labeled only with the myosin I antibody. Competition studies indicated the specificity of the heterologous antibodies utilized in this study suggesting the presence of three classes of myosins in pollen. These results lead to the following hypothesis: Myosin I may move the generative cell and vegetative nucleus unidirectionally through the pollen tube to the tip, while myosin V moves the smaller organelles and myosins I and II move the larger organelles (bidirectionally) that are involved in growth

    Immunochemical and Immunocytochemical Identification of a Myosin Heavy Chain Polypeptide in Nicotiana Pollen Tubes

    Get PDF
    A myosin heavy chain polypeptide has been identified and localized in Nicotiana pollen tubes using monoclonal anti-myosin antibodies. The epitopes of these antibodies were found to reside on the myosin heavy chain head and rod portion and were, therefore, designated anti-S-1 (myosin S-1) and anti-LMM (light meromyosin). On Western blots of the total soluble pollen tube proteins, both anti-S-1 and anti-LMM label a polypeptide of approximately 175,000 Mr. Immunofluorescence microscopy shows that both antibodies yield numerous fluorescent spots throughout the whole length of the tube, often with an enrichment in the tube tip. These fluorescent spots are thought to represent vesicles and/or organelles in the pollen tubes. In addition to this common pattern, anti-S-1 stains both the generative cell and the vegetative nuclear envelope. The different staining patterns of the nucleus between anti-S-1 and anti-LMM may be caused by some organization and/or anchorage state of the myosin molecules on the nuclear surface that differs from those on the vesicles and/or organelles

    Free calcium increases during anaphase in stamen hair cells of Tradescantia.

    Full text link

    Localization of Ca++-containing antimonate precipitates during mitosis.

    Full text link

    Actin Filaments in Mature Guard Cells Are Radially Distributed and Involved in Stomatal Movement

    Full text link

    Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a Mare’s tale

    Get PDF
    Silica is the second most abundant biomineral being exceeded in nature only by biogenic CaCO3. Many land plants (such as rice, cereals, cucumber, etc.) deposit silica in significant amounts to reinforce their tissues and as a systematic response to pathogen attack. One of the most ancient species of living vascular plants, Equisetum arvense is also able to take up and accumulate silica in all parts of the plant. Numerous methods have been developed for elimination of the organic material and/or metal ions present in plant material to isolate biogenic silica. However, depending on the chemical and/or physical treatment applied to branch or stem from Equisetum arvense; other mineral forms such glass-type materials (i.e. CaSiO3), salts (i.e. KCl) or luminescent materials can also be isolated from the plant material. In the current contribution, we show the chemical and/or thermal routes that lead to the formation of a number of different mineral types in addition to biogenic silica

    Conceptualising production, productivity and technology in pharmacy practice: a novel framework for policy, education and research.

    Get PDF
    CONTEXT AND BACKGROUND: People and health systems worldwide face serious challenges due to shifting disease demographics, rising population demands and weaknesses in healthcare provision, including capacity shortages and lack of impact of healthcare services. These multiple challenges, linked with the global push to achieve universal health coverage, have made apparent the importance of investing in workforce development to improve population health and economic well-being. In relation to medicines, health systems face challenges in terms of access to needed medicines, optimising medicines use and reducing risk. In 2017, the International Pharmaceutical Federation (FIP) published global policy on workforce development ('the Nanjing Statements') that describe an envisioned future for professional education and training. The documents make clear that expanding the pharmacy workforce benefits patients, and continually improving education and training produces better clinical outcomes. AIMS AND PURPOSE: The opportunities for harnessing new technologies in pharmacy practice have been relatively ignored. This paper presents a conceptual framework for analysing production methods, productivity and technology in pharmacy practice that differentiates between dispensing and pharmaceutical care services. We outline a framework that may be employed to study the relationship between pharmacy practice and productivity, shaped by educational and technological inputs. METHOD AND RESULTS: The analysis is performed from the point of view of health systems economics. In relation to pharmaceutical care (patient-oriented practice), pharmacists are service providers; however, their primary purpose is not to deliver consultations, but to maximise the quantum of health gain they secure. Our analysis demonstrates that 'technology shock' is clearly beneficial compared with orthodox notions of productivity or incremental gain implementations. Additionally, the whole process of providing professional services using 'pharmaceutical care technologies' is governed by local institutional frames, suggesting that activities may be structured differently in different places and countries. DISCUSSION AND CONCLUSION: Addressing problems with medication use with the development of a pharmaceutical workforce that is sufficient in quantity and competence is a long-term issue. As a result of this analysis, there emerges a challenge about the profession's relationship with existing and emerging technical innovations. Our novel framework is designed to facilitate policy, education and research by providing an analytical approach to service delivery. By using this approach, the profession could develop examples of good practice in both developed and developing countries worldwide
    • …
    corecore