77 research outputs found

    Robust filtering: Correlated noise and multidimensional observation

    Full text link
    In the late seventies, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff] pointed out that it would be natural for πt\pi_t, the solution of the stochastic filtering problem, to depend continuously on the observed data Y={Ys,s∈[0,t]}Y=\{Y_s,s\in[0,t]\}. Indeed, if the signal and the observation noise are independent one can show that, for any suitably chosen test function ff, there exists a continuous map θtf\theta^f_t, defined on the space of continuous paths C([0,t],Rd)C([0,t],\mathbb{R}^d) endowed with the uniform convergence topology such that πt(f)=θtf(Y)\pi_t(f)=\theta^f_t(Y), almost surely; see, for example, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff], Clark and Crisan [Probab. Theory Related Fields 133 (2005) 43-56], Davis [Z. Wahrsch. Verw. Gebiete 54 (1980) 125-139], Davis [Teor. Veroyatn. Primen. 27 (1982) 160-167], Kushner [Stochastics 3 (1979) 75-83]. As shown by Davis and Spathopoulos [SIAM J. Control Optim. 25 (1987) 260-278], Davis [In Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Proc. NATO Adv. Study Inst. Les Arcs, Savoie, France 1980 505-528], [In The Oxford Handbook of Nonlinear Filtering (2011) 403-424 Oxford Univ. Press], this type of robust representation is also possible when the signal and the observation noise are correlated, provided the observation process is scalar. For a general correlated noise and multidimensional observations such a representation does not exist. By using the theory of rough paths we provide a solution to this deficiency: the observation process YY is "lifted" to the process Y\mathbf{Y} that consists of YY and its corresponding L\'{e}vy area process, and we show that there exists a continuous map θtf\theta_t^f, defined on a suitably chosen space of H\"{o}lder continuous paths such that πt(f)=θtf(Y)\pi_t(f)=\theta_t^f(\mathbf{Y}), almost surely.Comment: Published in at http://dx.doi.org/10.1214/12-AAP896 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Examples of renormalized SDEs:SPDERF 2016: Stochastic Partial Differential Equations and Related Fields

    Get PDF
    We demonstrate two examples of stochastic processes whose lifts to geometric rough paths require a renormalisation procedure to obtain convergence in rough path topologies. Our first example involves a physical Brownian motion subject to a magnetic force which dominates over the friction forces in the small mass limit. Our second example involves a lead-lag process of discretised fractional Brownian motion with Hurst parameter H∈(1/4,1/2)H \in (1/4,1/2), in which the stochastic area captures the quadratic variation of the process. In both examples, a renormalisation of the second iterated integral is needed to ensure convergence of the processes, and we comment on how this procedure mimics negative renormalisation arising in the study of singular SPDEs and regularity structures.Comment: 13 page

    From constructive field theory to fractional stochastic calculus. (II) Constructive proof of convergence for the L\'evy area of fractional Brownian motion with Hurst index α∈(1/8,1/4)\alpha\in(1/8,1/4)

    Full text link
    {Let B=(B1(t),...,Bd(t))B=(B_1(t),...,B_d(t)) be a dd-dimensional fractional Brownian motion with Hurst index α<1/4\alpha<1/4, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of BB is a difficult task because of the low H\"older regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to BB, or to solving differential equations driven by BB. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using "standard" tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates, and call for an extension of Gaussian tools such as for instance the Malliavin calculus. After a first introductory paper \cite{MagUnt1}, this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as L\'evy area

    Multiscale Systems, Homogenization, and Rough Paths:VAR75 2016: Probability and Analysis in Interacting Physical Systems

    Get PDF
    In recent years, substantial progress was made towards understanding convergence of fast-slow deterministic systems to stochastic differential equations. In contrast to more classical approaches, the assumptions on the fast flow are very mild. We survey the origins of this theory and then revisit and improve the analysis of Kelly-Melbourne [Ann. Probab. Volume 44, Number 1 (2016), 479-520], taking into account recent progress in pp-variation and c\`adl\`ag rough path theory.Comment: 27 pages. Minor corrections. To appear in Proceedings of the Conference in Honor of the 75th Birthday of S.R.S. Varadha

    Stochastic many-particle model for LFP electrodes

    Get PDF
    In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage–current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage–charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates
    • …
    corecore