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Abstract In the framework of non-equilibrium thermodynamics we derive
a new model for many-particle electrodes. The model is applied to LiFePO4

(LFP) electrodes consisting of many LFP particles of nanometer size. The
phase transition from a lithium-poor to a lithium-rich phase within LFP elec-
trodes is controlled by both different particle sizes and surface fluctuations
leading to a system of stochastic differential equations.

An explicit relation between battery voltage and current controlled by the
thermodynamic state variables is derived. This voltage-current relation reveals
that in thin LFP electrodes lithium intercalation from the particle surfaces
into the LFP particles is the principal rate limiting process. There are only
two constant kinetic parameters in the model describing the intercalation rate
and the fluctuation strength, respectively. The model correctly predicts several
features of LFP electrodes, viz. the phase transition, the observed voltage
plateaus, hysteresis and the rate limiting capacity. Moreover we study the
impact of both the particle size distribution and the active surface area on the
voltage-charge characteristics of the electrode. Finally we carefully discuss the
phase transition for varying charging/discharging rates.

Keywords lithium-ion battery · lithium iron phosphate · phase transitions ·
many particle electrode

1 Introduction

In recent years there is an increasing need for powerful and effective batteries
due to rapidly growing electro mobility. Currently the most promising battery
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type are lithium-ion batteries. In the last decades great progress has been
made in the development of both new electrode materials and new electrolytes.
In order to design and improve the batteries a deep understanding of their
physicochemical processes is mandatory. To this end mathematical models
embodying the physical and chemical behavior of battery materials from the
micro to the macro scale are essential.

Many classical continuum models for lithium-ion batteries rely on the
framework developed by Newman et al. [10,11,43]. Here the processes within
electrodes and electrolytes are described by diffusion equations and the trans-
fer of charge at the electrode-electrolyte interface is modeled by Butler-Volmer
kinetics [25,28,41,21,23]. For known model parameter, these models are ca-
pable to determine the influence of the battery geometry on the cell voltage
and thus to configure a suitable battery design. Although the Newman bat-
tery models are quite popular and widely used they exhibit several drawbacks,
which limits the usability of these models:

– The model parameters are functions of concentration and temperature.
Thus a costly parameter fitting is necessary to have accordance with mea-
surements.

– The dependence of the open-circuit potential of the battery on the state of
charge is a fitting curve and is not predicted by the battery model itself.

– The Newman model is based on the electroneutral approximation in the
electrolyte phase, which is not valid in porous electrodes with pore diam-
eters in the range of the Debye length.

– For phase separating electrode materials the incorporation of phase tran-
sition within the Newman model is challenging.

– The momentum balance is ignored. Thus the extension of Newman models
to volume expansion and elasticity is severely limited.

– The validity range of the Newman model is not defined. In the case of
failure of the model, the origin of the failure can not be identified and an
improvement/extension of the model is difficult.

These drawbacks might be resolved if the battery model is embedded in a
general theoretical framework like non-equilibrium thermodynamics. The use
of non-equilibrium thermodynamics has the advantage that it distinguishes
carefully between universal principles and material dependent constitutive re-
lations. Thus this offers the chance to formulate quite general constitutive
equations where the material properties are encoded within a general free en-
ergy function. Moreover, numerous different phenomena can be consistently
coupled [36,7,39,3]. In recent years continuum models for batteries and elec-
trodes could be improved significantly by applying non-equilibrium thermo-
dynamics [2,33,42,31,32,14,20,15].

In this study we develop a general mathematical model for many-particle
electrodes in the context of non-equilibrium thermodynamics, which takes into
account diffusion and elastic deformations in the electrode particles and the
electrolyte as well. Particularly, adsorption, reactions and surface tension at
the electrode-electrolyte interface are incorporated. For nano-sized electrode



Stochastic many-particle model for LFP-electrodes 3

particles and electrode widths in the micrometer scale, the general electrode
model can be simplified in such a way that the processes within the many-
particle electrode are dominated exclusively by surface phenomena: adsorp-
tion, intercalation and reaction. Finally we apply the model to a lithium iron
phosphate (LFP) electrode.

The modeling of LFP represents a challenge because during charging and
discharging LFP exhibits a two-phase system with lithium-rich and lithium-
poor phases [40,8,5]. The characteristic horizontal voltage plateaus in the
voltage-capacity diagram is due to this phase transition, Figure 1right. Here
the task to design a model becomes ambitious since two different phase tran-
sitions are in competition [20]: (i) There is a phase transition in the individual
particles, and (ii) a phase transition in the ensemble of storage particles, where
the LFP particles have high and low lithium filling, respectively. Moreover, the
phase transition happens in a sequential order, in other words, the particles
are filled according to the rule one after the other [20]. Detailed studies of
the phenomenon have revealed that the kind of phase transition depends on
the charging speed and the size of the storage particles [33,35,34,5]. Careful
experimental studies unambiguously show that the time scale of the phase
transition within a nano-sized particle is much smaller than the charging time
of a battery [34]. Thus on the time scale of charging the phase transition within
the ensemble of nano-sized particles is the dominant one.

In this study we only address the phase transition within the ensemble.
We incorporate in our many-particle model two stochastic mechanisms which
might affect the phase transitions: i) distribution of particle volumes and effec-
tive surface areas over the particle ensemble and ii) stochastic fluctuations on
the surface. At the end the LFP many particle model is represented by a system
of stochastic differential equations. Despite its simplicity the many-particle
model embodies already many properties of LFP electrodes. In particular we
may predict the influence of size distribution (of the electrode particles), active
surface area, surface stochastic fluctuations and charging rate on the battery
voltage.

The paper is organized as follows. We start in Section 2 with a phenomeno-
logical description of the functionality of a battery consisting of a LFP elec-
trode as cathode and a metallic lithium electrode as anode. The stochastic
model is introduced in Section 3. In Section 5 we discuss the relation between
the phase transition and the battery voltage on the basis of a variety of simu-
lations. The detailed derivation of the model equations including a list of the
essential assumptions is described in Section 6. The paper concludes with a
discussion, where in particular we address the initially mentioned drawbacks
of current battery models. A list of model parameters and symbols is given at
the end.
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Fig. 1 Left: Sketch of the LFP battery, Right: Typical voltage-capacity profile for a LFP
electrode at low charging/discharging rate C/20 (from [20])

2 Description of the battery

Design of the battery. We consider a battery consisting of a LFP many-particle
cathode, a liquid electrolyte and metallic lithium as the anode. The many-
particle electrode consists of carbon coated LFP particles. The carbon coating
improves the electric conductivity of the LFP particles [38,9]. Usually carbon
black is added to the LFP electrode such that the particles are electrically
connected to each other. We neglect the carbon black and model the elec-
tron transport by the assumption that carbon coated LFP particles form an
electric network. Thus the electron transport is achieved along the carbon
coated particle surfaces. Moreover some LFP-particles are attached to a metal
based current collector. Here usually aluminum is utilized. The electrolyte is
a mixture of some lithium salt dissolved in some liquid organic solvent, e.g.
LiPF6 dissolved in a mixture of ethylene and dimethyl carbonate. The passive
components of the battery such as binder, separator and further additives are
ignored in this study. A sketch of the battery is shown in Figure 1.

Processes within the battery. During discharging of the battery lithium is
transferred from the lithium anode to the LFP many particle cathode and
vice versa for thecharging process. The transport of lithium is the main limit-
ing phenomenon that controls the functionality of the battery. The transport
process itself consists of a combination of several rate limiting phenomena.
In particular, we have to distinguish between surface and bulk transport. The
main bulk phenomena are ion diffusion within the liquid electrolyte and lithium
diffusion and phase separation within the LFP particles.

At the particle surface we have: i) tangential mass transport, in particular
electron transport, ii) adsorption of electrolytic species, iii) an electron transfer
reaction of the form Li+ + e− −−⇀↽−− Li, and iv) the intercalation of lithium into
the iron-phosphate lattice.

At the lithium anode the situation is more simple. Lithium is deposited on
or dissolved from the electrode surface for the charging and the discharging
process, respectively.
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Further processes such as heat generation and transport, mechanical de-
formation, dendrite growth or aging processes are not among the topics of
this work.However, the thermodynamic approach of Sect. 6 can be used to
incorporate these phenomena as well.

Model restrictions. Our many-particle model for a LFP electrode describes the
experimentally observed features of the battery and is easy to solve. We restrict
and simplify the full thermodynamic model of Sect. 6 by some assumptions.
The main assumptions are:

– Large porosity of the LFP electrode, whose thickness is in the micrometer
scale.

– Nano-sized LFP particles.
– Rigid LFP particles, i.e. volume and surface of a particle do not change for

a varying charging state.
– Constant temperature due to high heat conduction, which is appropriate

in small cells.
– Lithium is exclusively stored in the LFP particles and in the lithium anode.
– The lithium anode is equipped with a large surface.
– Fast surface diffusion.

The full and more detailed list of assumptions can be found in Sect. 6. The
main implications of these assumptions are that the lithium mole fraction
within a particle is spatially constant and the electrolyte behaves quasi-static,
i.e. the lithium and charge transport within the particles and the electrolyte
is infinitely fast on the time scale of charging.

These assumptions about the battery are satisfied for micro batteries and
high power batteries as well. However, for moderate charging-discharging times
there is a much larger class of batteries where the assumption are appropriate.

3 The many-particle model

In this section we introduce the many-particle model for the LFP electrode.
The model consists of (i) a system of stochastic differential equations (SDE),
(ii) a constraint prescribing the state of charge of the battery, and (iii) voltage
and current relations.

We split the introduction of the many-particle model into two parts. In the
first part we introduce the “semi-stochastic” model, where stochastic effects
enter via distributions of volumes and surface areas into the model. In the
second part we specify the full stochastic model, where stochastic fluctuations
modeled by Wiener processes are added. The detailed derivation of the model
is postponed to Sect. 6.

Notations. The many-particle electrode consists of NP storage particles in-
dexed by i = 1, 2, ..., NP. The particles have volumes V i and active surface
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areas AiE, which are time independent due to the model assumption. The total
volume and the total active surface area of the LFP particles are denoted by

VP =

NP∑
i=1

V i and AE =

NP∑
i=1

AiE . (1)

The surface area of the lithium anode/electrolyte interface is denoted by AAE.

Thermodynamic state. The number of stored lithium atoms in particle Pi at
time t ≥ 0 is denoted by N i

Li(t). The number of FePO4 units forming the
matrix lattice of particle Pi is time independent and denoted by N i

FePO4
. Each

particle has the same time independent number density nFePO4
. The number

densities of the intercalated lithium niLi are time dependent but constant in
space within a particle Pi. The number densities are related to the number of
stored lithium and to the number of FePO4 units by N i(t) = niLi(t)V

i and
N i

FePO4
= nFePO4

V i.
Each FePO4 unit provides a free lattice site that may be occupied by a

lithium atom. Then the mole fraction yi ∈ [0, 1] of occupied lattice sites of
particle Pi is defined as

yi(t) =
niLi(t)

nFePO4

. (2)

The thermodynamic state of the many-particle electrode is exclusively repre-
sented by the lithium mole fractions of the particles, (yi)i=1,2,...,NP

.

3.1 The semi-stochastic model for many particle electrodes

The evolution of the thermodynamic state of the many-particle electrode is
described by the system

dyi

dt
=

1

τ i
mLi

kBT
(µs,Li − µLi(y

i)) with
1

τ i
=

kLi
mLinFePO4

AiE
V i

. (3)

As shown in Sect. 6 the system (3) relies on the integrated mass balance
equations of the stored lithium in the LFP particles. Due to the assumption
of homogeneous lithium mole fractions, the particle volume V i and the active
surface area AiE appear explicitly in the equation. This leads to particle size
dependent relaxation time τ i for each particle.

The right hand site of (3) arises from the flux jiLi describing the intercala-
tion of lithium atoms from the surface of particle Pi into the FePO4 lattice,

jiLi = kLi
mLi

kBT

(
µLi(y

i)− µs,Li
)
. (4)

The lithium flux is driven by the chemical potential difference µLi(y
i)− µs,Li,

where µs,Li represents the surface chemical potential of lithium atoms on the
particle surface and µLi is the chemical potential of intercalated lithium at the
surface. The kinetic parameter kLi has the unit kg/(m2s) and represents the
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rate constant of intercalation of lithium atoms into the FePO4 lattice. mLi is
the molecular mass of lithium and nFePO4

is number density of iron phosphate.
The assumption of fast surface diffusion implies that the surface chemical

potential µs,Li is the same for all LFP particles. Therefore all balance equations
are coupled through the chemical potential µs,Li . The chemical potential of
intercalated lithium, µLi, is a function of the lithium mole fraction yi of the
corresponding LFP particle. In order to model the phase separating behavior
of LiyFePO4 we choose the widely used non-monotone function [42,1,14]

µLi = µref
Li + L

mLi
(1− 2y) + kBT

mLi
ln
( y

1− y

)
. (5)

The chemical potential consists of three contributions. The first part µref
Li is

a constant material parameter depending on the properties of LiFePO4. The
second part takes into account the energetic interaction of lithium with the
iron-phosphate lattice. The parameter L represents the heat of solution and has
the unit J (Joule). In particular, the parameter L controls the energy barrier
between the lithium-poor and the lithium-rich phase[14]. Finally there is a
third contribution that takes into account the entropy of mixing of lithium
atoms on the available lattice sites. Figure 2 depicts the chemical potential
function µLi(y) for a typical choice of L = 94.4× 10−22J/kg and µref

Li = 0 J/kg
.

Fig. 2 Non-monotone chemical potential of lithium in iron-phosphate.

State of charge - charging rate. The total mole fraction q ∈ [0, 1] of the many-
particle ensemble describes the state of charge of the battery,

q(t) =

∑NP

i=1N i
Li(t)∑NP

j=1N
j
FePO4

=

NP∑
i=1

V i

VP
yi(t) . (6)

The state q = 0 and q = 1 correspond respectively to a fully charged and
fully discharged battery. The charging rate of the battery is given by the time
derivative of the total mole fraction.
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We assume that lithium can be stored exclusively inside the LFP particles
and not elsewhere. Thus in a galvanostatic charging/discharging process the
total mole fraction q is the external control parameter. Consequently, the equa-
tion (6) represents a constraint on the evolution of the lithium mole fractions
y1(t), y2(t), ..., yNP(t). According to (3) and (6) we have

dq

dt
=

mLi

kBT

NP∑
i=1

V i

VP

1

τ iLi

(
µs,Li − µLi(y

i)
)
. (7)

This equation is used to determine the surface chemical potential µs,Li. In
this context µs,Li may be interpreted as a Lagrange multiplier to satisfy the
constraint (6).

Electric current. There is a universal relation between the charging rate dq/dt
of the LFP particles and the electric current I which flows through the battery,

I = e0nFePO4
VP
dq

dt
. (8)

Here the physical unit of I is A (Ampere). The relation (8) relies on bulk and
surface mass balance equations and will be derived in Section 6.

Battery voltage. The battery voltage U is defined as the electric potential dif-
ference between the metal foils of cathode and anode. Based on the constitutive
relations of Sect. 6 we obtain the relation

U = U ref − mLi

e0

NP∑
i=1

AiE
AE

(
µLi(y

i)− µref
Li

)
− kBT

e0

(
1

AEjP
+ 1

AAjA

)
I. (9)

Here jP and jA correspond to the total exchange current of the LFP electrode
and the lithium anode, respectively. They are defined in terms of the different
interfacial dissipative mechanisms happening at the electrodes,

1

jP
=
( 1

jPic
+

1

jPad
+

1

jPre

)
and

1

jA
=
( 1

jAad
+

1

jAde

)
. (10)

The battery voltage consists of three contributions:

1. The first contribution is a constant voltage U ref = 1
e0

(me−µe− |SC
+mLi+µLi+ |SA

−
mLiµ

ref
Li ) which is characterized by the constant chemical potential µe− of

the electrons at the current collector of the cathode, the chemical potential
µLi+ of lithium of the anode and a reference chemical potential of lithium
in iron phosphate.

2. The second contribution depends on the distribution of lithium within the
many-particle electrode which is controlled by the equation system (3) and
the relation (8).
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3. The third contribution is linear in I and takes into account the interfacial
dissipative mechanisms. They are characterized by five constant material
parameter: lithium intercalation jPic, surface reaction jPre, lithium adsorption
at the LFP particles jPad, adsorption at the lithium anode jAad, and lithium
deposition at the anode jAde. The parameter jPic is related to the intercalation
rate kLi by

jPic = e0
mLi

kLi . (11)

The linearity of the third contribution in the voltage-current relation (9) results
from linear relations between fluxes and driving forces. It is easy to extend
the model by corresponding nonlinear constitutive equations of Butler-Volmer
type [17,18]. In this case we would obtain logarithmic voltage-current relations.

Note that the thermodynamic derivation of Section 6 points out that sur-
face reaction, lithium adsorption and deposition only affect the voltage-current
relation (9) but not the dynamics of the many-particle model (3), given by the
time dependent amount of lithium distribution within the electrode.

3.2 The stochastic model for the many-particle electrode

In this section we extend the semi-stochastic model of the last paragraph by
adding some noise according to the Wiener process. The motivation for that
kind of noise will be given at the end of this section.

To introduce noise we assume that the lithium mole fractions y1, y2, ..., yNP

represent possible values of a vector-valued random variable Y = (Y 1, Y 2, ..., Y NP).
The set {Y (t)| t ≥ 0} defines a stochastic process that we determine by

the SDE system

Y i(t)− Y i(t0) =
1

τ i
mLi

kBT

∫ t

t0

(
µs,Li(s)− µLi(Y

i(s))
)
ds

+ νi
√

2

τ i
(
W i(t)−W i(t0)

)
− 1

τ i
(
Z(t)− Z(t0)

)
.

(12)

The difference to the semi-stochastic system described above is given by two
terms including W i(t)−W i(t0) and Z(t)−Z(t0), respectively. The first term
represents the increment of a Wiener process which models small lithium fluc-
tuations on the surface of the particles. The objects W i for i = 1, 2, ..., NP

are independent processes. The strength of the noise, νi, is controlled by the
constant parameter ν0 which is related to νi by

νi =
ν0√
V i

. (13)

The term Z(t)− Z(t0) is defined as

Z(t) =

∑NP

i=1
V i

VP
νi
√

2
τ iW

i(t)∑NP

j=1
V j

VPτj

. (14)
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The function Z(t) is introduced to preserve the constraint (7) for the surface
chemical potential µs,Li, i.e. Z(t) is introduced such that no noise term appears
in the side condition (7). Note that Z is a Gaussian process with covariance(∑NP

i=1(V
i

VP
νi)2 2

τ i

)
/
(∑NP

j=1
V j

VPτj

)2
, which is infinitesimal for NP large.

The Wiener process W = W (t, ω), which is also called Brownian motion,
is a particular stochastic process, which is, roughly speaking, a random func-
tion of time satisfying (i) its time increments are independent, i.e., for any
r < s < t, W (s) −W (r) and W (t) −W (s) are independent, (ii) it obeys a
Gaussian probability law with mean 0 and variance given by the time incre-
ment, i.e. W (t)−W (s) has the law N (0, t− s). Moreover, the Wiener process
is characterized as the process whose distributional time derivative is the white
noise in one dimension.

Next we give some motivations for the extended stochastic model. At first
recall that our previously proposed model in [15] for LFP particles of equal size
necessarily needs stochastic fluctuations in order to initiate the observed phase
transition. In those papers we introduced the fluctuations to describe the ex-
change of lithium between the LFP particles during the charging/discharging
process, which is the dominate phenomenon for both slow charging rates and
equal-size LFP particles. There we ended up with the Fokker Planck equation
for the evolution of stored lithium within the many particle electrode. In order
to generalize that model for LFP particles of different sizes we propose our
semi-stochastic ODE system for NP particles. Now it is well known that an
finite ODE system with a supplemented Wiener process converges to a Fokker
Planck equation in the limit NP → ∞, see for more details Section 4.1. This
is the main reason to introduce the Wiener process in our new ODE system.
A more physical point of view is this: One might think that the surface areas
of the LFP particles may be randomly covered with imperfections. However,
then one has to explain why the influence of the imperfections on the intercala-
tion dynamics is represented by a Wiener process. Thus we prefer to motivate
the Wiener process by the limit from the ODE system to the Fokker Planck
equation.

The same reasoning can be used to motivate the size dependence of the
parameter νi because our Fokker Planck setting in [15] unambiguously implies
the volume dependence of equation (13).

State of charge. The state of charge q is defined in the same way as for the semi-
stochastic model by equation (6). As in the semi-stochastic model, equations
(12) and (6) give again (7) for the surface chemical potential µs,Li: the terms
W i(t) do not give any explicit contribution in this formula as their sum cancels
with the term Z.

Electric current. The relation (8) between the electric current and the total
mole fraction is derived from general balance equations without using any
constitutive equations. Therefore the relation (8) for the current holds also in
the full stochastic setting.
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Battery voltage. The derivation of the battery voltage results from the consti-
tutive equation, in particular from the constitutive equation of the lithium flux
jLi which depends on the Wiener process. However, we will show in Section 6
that the relation (9) holds also in the stochastic setting.

3.3 Choice of model parameter for LFP electrodes

There are three kinds of distinguished model parameters: energetic, kinetic
and structural parameter. Their meaning and values used in the simulation
will be now discussed.

Energetic parameter. There are three energetic parameters in the various chem-
ical potentials of the model. The chemical potential µLi of the LFP particles
contains the parameter L representing the heat of solution, which takes into
account the interaction of lithium with the iron-phosphate lattice. The param-
eter L controls the height of the energy barrier between the lithium-rich and
the lithium-poor phase. For LFP the parameter L has to be chosen such that
the chemical potential µLi becomes non-monotone allowing phase separation.
A typical value for L used in simulation is [1,15,27]

L = 94.4× 10−22J . (15)

A further energetic parameter is the constant reference voltage U ref. Its value
depends on the material properties of both the LFP many-particle electrode
and the lithium anode. The reference voltage is approximately determined by
the mean value of the hysteresis plateaus in a volt-capacity diagram. From
Figure 1 we would determine the reference voltage

U ref = 3.4V . (16)

The third parameter ν0 controls the intensity of the fluctuations at the particle
surfaces. A suitable value of ν0 is derived in the Fokker-Planck setting [14],

ν0 =
√

kBT
LnFePO4

≈ 10−14m
3
2 . (17)

Kinetic parameters. Our constitutive model embodies five distinguished ki-
netic mechanisms with dissipation. Each mechanism is controlled by a corre-
sponding kinetic coefficient. It is convenient to write the coefficients in the
form of exchange currents.

jPic lithium intercalation

jPre surface reaction

jPad adsorption at the LFP particles

jAad adsorption at the lithium anode

jAde deposition of lithium at the anode .
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The kinetic parameters are either determined from atomistic theories or they
can be read off from measurements. However, measurements with LFP par-
ticles of nano-size are difficult due to the phase transition in LFP. Moreover,
the interaction of different surface processes and the experimental handling of
composite electrodes bring further complexities.

In particular only a measurement of the total exchange currents jP and jA
of the cathode and the anode are available in the literature, which appears in
our model as the combinations (10) of the kinetic parameter. However, values
for jP differ by several orders of magnitude. Values for jP in LFP which range
from 10−6 A m−2 to 10−1 A m−2 are reported [33]. In this study we assume
that the rate limiting process in the cathode is the lithium intercalation, i.e
both lithium adsorption and electron transfer reaction are fast compared to
the intercalation process, i.e.

jPic � jPre, j
P
ad =⇒ jP ≈ jPic . (18)

For the numerical investigations we choose the value

jPic ≈ jP = 0.15 A
m2 . (19)

According to (11) the kinetic coefficient kLi for the lithium intercalation is

kLi = mLi

e0
jPic = 10−8 kg

m2s . (20)

The exchange current jA describes lithium ion adsorption and lithium de-
position at the anode. Assuming that the surface area of the anode AAE is large
enough, precisely

APjP � AAEjA , (21)

the adsorption process at the lithium metal electrode has no significant impact
on the battery voltage.

According to these assumptions the voltage-current relation (9) for the
deterministic model simplifies to

U = U ref − mLi

e0

NP∑
i=1

AiE
AE

(
µLi(y

i)− µref
Li

)
+ mLi

e0
kBT
e0

1
AEkLi

I . (22)

Structural parameters. There are two geometric parameters encoding the spe-
cific structure of the LFP electrode, viz.

V i the individual volumes of the LFP particles,

AiE the individual active surface area of the LFP particles.

The particle volumes can be determine by an analysis of the electrode com-
position. Fig. 3 depicts a typical particle size distribution from a commercial
LFP electrode with spherical particles where the particle volumes can be read
off. The particle size distribution defines the probability to find a particle with
specific size within the electrode.
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Fig. 3 Typical particle size distribution of a commercial LFP electrode from [41].

The active surface area, more precisely the area where lithium can inter-
calate into the iron phosphate lattice, cannot be read off from an analysis of
the electrode geometry. Coating of the particles as well as the formation of
unwanted depositions at particle electrolyte interfaces could be responsible for
a decrease of the active surface area. Thus the active surface area might be
smaller than the full particle area. Unless otherwise specified, we assume in the
simulations that the full particle surface area is the active area and that the
particles are spherical, so that the surface areas and the volumes are functions
of the particle radii.

4 Various many-particle models in the literature

4.1 The Fokker-Planck setting

It is possible to associate the system of SDEs to a family of Fokker-Planck
equations, which give an equivalent description of the SDE system in the limit
of large number of particles.

To understand the link between SDEs and Fokker-Planck equations, we
start by recalling the following well-known fact: given a drift b, a number σ
and a Wiener process W , if a real-valued stochastic process Y satisfies the
SDE

Y (t) = Y (t0) +

∫ t

t0

b(s, Y (s)) ds+ σ(W (t)−W (t0)), (23)

then, for every t > 0, the probability law of Y admits a density p(t, ·) which
satisfies the Fokker-Planck equation

∂tp(t, y) = −∂y(b(t, y)p(t, x)) +
σ2

2
∂2yp(t, y) . (24)

Now we consider the stochastic model (12) for the many particle electrode
in case of single size particles. Note that in this case equation (7) for the surface
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chemical potential simplifies to

µs,Li(t) = τ
kBT

mLi

dq

dt
+

1

NP

NP∑
i=1

µLi(Y
i) .

where τ = τ i is independent of i. Here we will ignore both the Z term in
(12) and the boundary conditions Y i ∈ (0, 1). We suppose for a moment
that the chemical potential µs,Li does not depend on the particle number
NP nor on the specific realization of the noise. Then all particles would be
identically distributed, i.e. they have the same probability law, and would
behave independently. Then, by the law of large numbers, the system of SDEs
(12) with (6) would converge, in a suitable sense, to the single Fokker-Planck
equation, viz.

∂tp(t, y) =
1

τ

mLi

kBT
∂y
(
(µLi(y)− µs,Li(t))p(t, y)

)
+
ν2

τ
∂2yp(t, y) , (25)

where µs,Li is given by

µs,Li(t) = τ
kBT

mLi

dq

dt
+

∫ ∞
−∞

µLi(y) p(t, y) dy . (26)

The main point here for the SDE system (12), and more general for mean field
SDEs, is that this convergence remains true, even if the particle are interacting
(and so µs,Li is not fixed). This is a classical result, see e.g. [44] for the precise
statement. Therefore, in the case of single size particles, this Fokker-Planck
equation corresponds to our model in the limit of large number of particles.

The Fokker-Planck equation (25) is identical to the Fokker-Planck equa-
tion in [14] for a LFP many particle electrode. In [14] a statistical approach
is used to derive the Fokker-Planck equation. Existence and uniqueness of the
Fokker-Planck equation in the bounded domain (0, 1) is proved in [19]. A de-
tailed discussion of the different time regimes of the Fokker-Planck equation
can be found in [29,30]. It is shown in [14] that the Fokker-Planck equation (25)
is capable to predict and explain the voltage-capacity diagram and the phase
transition within the many particle system. But the Fokker-Planck equation
and the model approach of [14] has two import drawbacks: Firstly the Fokker-
Planck equation is difficult to extend to systems with different particle sizes
and to include phenomena like lithium transport in the LFP particles or elec-
trolyte. Secondly a precise physical interpretation of the parameter τ and ν
is missing. Both drawbacks are fully removed by the approach of this paper.
In particular, in [14] a Lagrange multiplier Λ was introduced to satisfy the
constraint (6) which reads in the Fokker-Planck setting for identical particle
sizes

q(t) =

∫ ∞
−∞

y p(t, y) dy . (27)

The derivation of the SDE system yields that the Lagrange multiplier is the
surface chemical potential of lithium, i.e. Λ = µs,Li. Moreover, in [14] the
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coefficient τ was interpreted as the relaxation time of the many particle system,
however, dependence on the particle size was missing in [14]. Here we can show
that τ is related to the intercalation process of lithium into the iron phosphate
lattice and how τ is related to the particle size.

In the case of different size particles, the particles are no more identically
distributed, since small particles behave differently from large ones. However,
the convergence result remains true, provided we replace the single Fokker-
Planck equation (25) by a family of Fokker-Planck equations, parametrized by
the radii R of the particles and coupled via the potential µs,Li, namely

∂tp(t, y, R) =
1

τ(R)

mLi

kBT
∂y
(
(µLi(y)− µs,Li)p(t, y, R)

)
+
ν(R)2

τ(R)
∂2yp(t, y, R) ,

(28)

where now µs,Li is given by

µs,Li =
VP

dq
dt +

∫ ∫
µLi(y) V (R)

τ(R) p(t, y, R) dydR∫ V (R)
τ(R) ρ(R) dR

, (29)

V (R) is the volume of the particle of radius R, and τ(R) and ν(R) are suitable
functions of the radius. This convergence statement can be shown for example
by a randomization procedure, see [24] for a completely analogous proof in the
context of Navier-Stokes equations.

The convergence statement for large particle number suggests the stability
of simulations (for high enough particle numbers). In practice, we observed
stability of simulations for NP higher than 103, therefore the numerical results
obtained for NP ≥ 103 are valid even for higher numbers, in particular for the
true number of particles in a LFP electrode (about 1017 particles, not feasible
to numerical treatment). Simulations for the SDE system with NP = 1000 are
fast and easier to implement than for the Fokker-Planck equations, especially
in the different size case.

In an upcoming paper we prove rigorously this convergence of the SDE
system in presence of boundary conditions [12]. Note indeed that the yi in
(12), being mole fractions, have to live in [0, 1] and therefore suitable reflection
conditions have to be imposed in (12) when the yi reach the boundary points
0 or 1.

4.2 Many-particle model for LFP electrodes

In the literature one finds a further remarkable paper dealing with a many-
particle models similar to our semi-stochastic model.

The aims of [22] by M. Farkhondeh et al. are the same as in the current
study. Farkhondeh et al. propose a dynamical model to describe phase tran-
sitions with hysteresis during the charging process of LFP electrodes. Their
model consists of the same ingredients of our semi-stochastic model. In our
words, Farkhondeh et al. use the same non-monotone chemical potential for
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LFP particles as here. They propose a system of relaxation equations for the
lithium concentrations of the LFP particles and they impose the constraint
that the total electric current of the cell is a weighted sum of the time deriva-
tives of the lithium concentrations, equations (1)-(4) from [22]. The main dif-
ference of [22] to our treatment is that Farkhondeh et al. do not recognize
that their system of evolution equations (2) and (3) relies on balance equa-
tions for the lithium masses of the LFP particles. Thus they must add in the
model equations a quite non-physical assumption stating the dependence of
the relaxation times on the particle index, equation (5) from [22]. Recall that
the balance character of our relation system implies an explicit dependence of
the kinetic parameter τ i of a LFP particle on its volume and effective surface
area.

4.3 Many-particle models in the context of atomic chains

Many-particle model are not only limited to the case of many-particle elec-
trodes. Finally we want to mention an interesting paper in the context of
atomic chains that uses a third source of stochastic fluctuations.

In [37] A. Mielke and L. Truskinovski study plastic phenomena with phase
transition and hysteresis by means of a many-particle model. To this end
they consider an atomic chain whose particles interact by bi-stable springs
and viscous dashpots. Ignoring the accelerations of the particles, the evolu-
tion equations for the mechanical strains have the same form of our evolution
system for the stored lithium masses within the LFP particles in our deter-
ministic model. Further correspondences are mechanical stress ↔ cell voltage,
time derivative of the total strain ↔ electric current in the electrode model,
and elastic part of the particle forces ↔ non-monotone chemical potentials
of the LFP particles. The two phenomenological parameters of our evolution
system also appears in [37], but in contrast to our treatment the parameters
are assumed to be independent of the particular particle of the atomic chain.
Obviously Mielke and Truskinovski also observed that such a model is not
capable to describe phase transitions with hysteresis. In order to embody that
phenomenon they introduce a distribution of reference forces over the particles
of the chain which would correspond to a distribution of the reference values of
the chemical potentials in our many particle model for the electrode. However,
it is known that the reference value of the chemical potentials is the same for
all LFP particles. Thus from a physical point of view we find it more natu-
ral to introduce a distribution of different relaxation parameter which would
correspond to a distribution of viscosities in [37].

5 Behavior of the many-particle model

In this section we show some selected results of numerical simulations of the
LFP electrode model. We study the influence of (i) charging time, (ii) stochas-
tic noise, (iii) particle size distribution and (iv) active surface areas on the
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Fig. 4 Symmetric voltage hysteresis of a charge-discharge processe for a 1C charging rate.

dynamics of the SDE system. Here we distinguish between the influence on
the microscopic behavior of the system, i.e. the behavior of individual storage
particles, and on the macroscopic behavior, i.e. the battery voltage U .

For the simulations we assume spherical particles and we denote the par-
ticle radius of particle P i with Ri. We use a particle size distribution of a
commercial LFP electrode which serves as reference distribution [41], Figure
3. Further distributions are generated by stretching and shifting of the refer-
ence distribution. To compare a particle size distribution and a particle system
with identical particles, we keep the same number of particles and we choose
the size of the identical particles in such a way that the total particle volumes
of both systems are equal.

An analysis of the SDE system shows that a solution (Y charge
i )i=1,...,N of

a charging process with qcharge can be used to define a solution of discharge

process by (Y discharge
i )i=1,...,N and qdischarge = 1 − qcharge due to the sym-

metric chemical potential (5). Therefore a simulation of charge and discharge
processes with the same charging rate is symmetric. In Figure 4 a symmetric
voltage hysteresis for a 1C charging process is shown. Due to this symmetry we
only consider discharge curves to illustrate the behavior of the many-particle
model.

The following simulations are done with approximately 5000 particles. This
value provides feasible and stable simulations, see the end of Section 4.1. We
replace the surface chemical potential µs,Li in the SDE system (12) by the
relation (7) and we obtain an SDE system for the mole fractions Yi. All sim-
ulations have been implemented in MATLAB and performed with an explicit
Euler scheme with fixed time step size. The simulations are stopped when one
concentration Y i reaches 0 or 1 as consequence of noise or numerical error.

Impact of the particle size distribution. At first we study the differences be-
tween single size and different size cases on the macroscopic behavior of the
many-particle electrode model, for different charging rates and in precence of
stochastic fluctuations.

To allow a better comparison of the simulations with different charging
rates, we ignore the linear shift in the representation for the battery voltage
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(9). Then the voltage of the battery is defined by the (dimensionless) mean
chemical potential 〈µLi〉,

〈µLi〉(t) = mLi

kBT

NP∑
i=1

AiE
AE

(µLi(Y
i(t))− µref

Li ) . (30)

In Figure 5 the mean chemical potential 〈µLi〉 against the state of charge q is
plotted. In the case of single size particles the simulations show strong oscilla-
tions and a non-monotone behavior in the 〈µLi〉-q plot. Only for the extreme
slow charging rate C/20000 the simulation with the single size particles shows
the typical horizontal voltage plateau of LFP electrodes. On the other hand all
simulations with the particle size distribution of Figure 3 exhibit flat plateaus
and show bare oscillations.

From this observation we conclude that the many-particle model with single
size particles is only capable to predict experimental observed voltage plateaus
for very slow charging rates. On the contrary the many-particle model with
particle size distribution predicts the voltage plateaus in all charging regimes.

Fig. 5 Comparison of simulations with particles of the same size and size distribution. Mean
chemical potential 〈µ〉 over state of charge q for single size particles (green) and particle size
distribution (blue). The gray curve indicates the chemical potential µLi − µrefLi . Charging
rate: a) C/20000, b) C/500, c) C/100, d) C/25.

Impact of stochastic fluctuations. Next we study the impact of the stochastic
fluctuations on the macroscopic behavior of the many-particle model.
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Fig. 6 Impact of the stochastic fluctuations on the mean chemical potential 〈µLi〉. Left:
Single size particles without (dashed) and with stochastic fluctuations (solid), Right: Particle
size distribution without (dashed) and with stochastic (solid). Charging rate C/500. The
gray curve indicates the chemical potential µLi − µrefLi .

Figure 6 shows the simulations with and without stochastic fluctuation for
both electrodes with single size particles and particle size distributions for the
charging rate C/500.

We observe for the simulation with single size particles and without fluc-
tuation that the horizontal voltage plateau vanishes and the mean chemical
potential follows the non-monotone curve of the chemical potential of a single
particle. Conversely, the simulation with particle size distribution shows nearly
no observable influence of the stochastic fluctuations on the mean chemical po-
tential, i.e. on the battery voltage.

We conclude that the model with single size particles and without stochas-
tic fluctuations is not capable to predict the horizontal voltage plateaus even
in a slow charging regime. In the case with particle size distribution the the
stochastic fluctuations have a minor impact on the battery voltage and the
horizontal voltage plateau is preserved.

Phase separation. To illustrate the phase separation within the electrode dur-
ing a discharging electrode, we consider snapshots of the lithium distribution
within the electrode for half-discharged electrodes, i.e. q = 0.5.

We start with simulations in the slow charging regime of C/500 with
stochastic fluctuations. Figure 7 shows the corresponding snapshots of the par-
ticle mole fractions at q = 0.5. Here the simulations with single size particles
and particle size distribution as well exhibit a pronounced phase separation.
Almost all particles are either in the lithium rich phase or in the lithium poor
phase.

The simulation with particle size distribution further shows that small
particles undergo the phase transition first while larger particles exhibit the
phase transition later. However, Figure 7right likewise shows that the phase
transition do not exclusively depend on the particle size.There exist a broad
region where small and large particles coexist in the same phase. Furthermore
the simulation shows that several large particles remain in an intermediate
phase even for a macroscopic time period, i.e. these particles are neither in the
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Fig. 7 Impact of the particle size distribution on the phase separation at charging rate 1/500
C. Particles are ordered by size. Simulations with stochastic fluctuation. Mole fraction y of
the individual storage particles at the state q = 0.5. Left: single size particles, Right: particle
size distribution.

lithium rich nor in the lithium poor phase. These findings are in agreement
with experiments on LFP electrodes [34,33,8].

In the charging regime C/500 with single size particles, but without stochas-
tic fluctuations, the behavior drastically changes. All particles behave identi-
cally and no phase separation is observable anymore, Figure 8left. This explains
the behavior observed in Figure 5 where the mean chemical potential follows
the non-monotone curve of the chemical potential of a single particle.

Conversely, for the many particle model with particle size distribution, but
without surface fluctuations, a two-phase system is established. Due to the
missing stochastic fluctuations the set in of the phase transition is ordered by
the particle size, as it is depicted in Figure 8right.

Fig. 8 Impact of the particle size distribution on the phase separation at charging rate 1/500
C. Particles ordered by size. Simulations without stochastic fluctuations. Mole fractions y
of the individual storage particles at the state q = 0.5. Left: single size particles, Right:
particle size distribution.

We consider now the fast charging regime 1C. In the single size case there
is, even under the influence of surface fluctuations, no phase separation in the
particle system and all particle behave identically as it is depicted for q = 0.5 in
Figure 9left. This also explains the behavior of the mean chemical potential in
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Figure (5)d) where the potential follows the non-monotone chemical potential
of a single particle. In case of the particle size distribution only small particles
reach a lithium rich phase at q = 0.5, while the larger particles remain in an
intermediate phase, Figure 9right. As before in the slow charging regime the
order of particles undergoing a phase transition depends on the particle size.

Fig. 9 Impact of the particle size distribution on the phase separation at charging rate 1
C. Simulations with stochastic fluctuation. Mole fraction y of the individual storage particle
at the state q = 0.5. Left: single size particles, Right: particle size distribution (particles
ordered by size).

To summarize, both the particle size distribution and the stochastic fluc-
tuations have an impact on the microscopic dynamics of the SDE systems,
particularly on the phase separation.

In the case of single size particles only simulations with stochastic fluctu-
ation and for slow charging rates predict a phase separation. In simulations
without fluctuations or for high charging rates all particles behave identically
and a phase separation is missing.

All simulations with particle size distribution show phase separation within
the electrode even in the case without stochastic fluctuations. The simulations
also predict a dependence of the phase transition on the particle size. This
finding is experimentally observed in LFP electrodes where the electric con-
duction is improved by addition of carbon black [34]. Furthermore the sim-
ulations show that larger particles seem to prefer an intermediate state and
this behavior is even stronger pronounced for high charging rates. Likewise
this finding is in agreement with experiments. Chueh et al. show that in LFP
electrodes with small ellipsoidal particles of mean size 230nm two coexisting
phases exist whereas electrodes with large platelet particles of mean size 3µm
are homogeneous and they are simultaneously filled [35].

Various particle size distribution. Next we study the effects of different par-
ticle size distributions on the battery voltage. As discussed above the surface
fluctuations have no effect the battery voltage for the particle size distribu-
tion form Figure. 3. Therefore we have been performed all simulations without
stochastic fluctuations. We exclusively consider the fast charging regime 1C.



22 Clemens Guhlke et al.

We start with the reference particle size distribution from Figure 3. To gen-
erate new size distributions the original distribution ranging from 25nm up
to 400nm is now stretched and shifted, respectively. Figure 10 depicts three
discharging processes with rate 1C for increasingly stretched size distributions.
Both the height of the voltage plateau and the value of q where a sharp drop
of the voltage occurs, decrease for increasingly stretched size distributions, i.e.
the size distribution has a pronounced effect on the rate dependent capacity
of the battery.

Fig. 10 Impact of stretched size distribution: 25 − 400nm (red), 25 − 1000nm (green),
25 − 1500nm (blue); Left: particle size distributions, Right: corresponding voltage for a
discharge process at rate 1C.

In Figure 11 the reference size distribution is shifted by fixed values. Here
the voltage decreases as the distribution is shifted to bigger sized particles
but the rate dependent capacity remains the same. This is in contrast to real
batteries where a reduction of the rate dependent capacity would be expected.
The origin of this deficiency might be the assumption of fast diffusion within
the LFP particles, which is not satisfied for particle size distribution in the
micrometer range. However, this assumption is necessary in order to handle
homogeneous particles only. Note that these observation is crucial for more
detailed studies on the effects of particle size distributions on the performance
of batteries.

Impact of the active area. A crucial parameter in our model is the active area
AiE, which is the area of particle P i where lithium can intercalate. In batteries
this active area depends on the ionic and electronic conductivity of the particle
to both electrode and electrolyte. Manufacturing processes as surface coating
may affect the active area [38].

To us it seems reasonable that small particles have a larger ratio of active
area to the full particle surface area as large particles. Figure 12left shows
three different ratios of active area-particle surface area that are used in the
simulations shown in Figure 12right. The active areas are calculated by the
interpolation formula AiE = 4π(Ri)

2( 1
2 (1 − (Ri − Rmin)/(Rmax − Rmin))x +

(1 − x)), where x is the desired ratio of active area-particle surface area of
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Fig. 11 Impact of shifted size distribution: 25−400nm (red), 525−900nm (green), 1025−
1400nm (blue); Left: particle size distributions, Right: corresponding voltage for discharge
process with rate 1C.

Fig. 12 Impact of active surface areas. Left: ratio between active surface area and total
surface area. Right: corresponding voltage for 1C discharge process.

the larges particle and Rmin and Rmax are the radii of the smallest and larges
particle respectively.

The effect of the active area on the battery voltage is shown for a discharge
process with rate 1C. For the simulations the surface fluctuations are not taken
into account. The simulation shows that reducing the active area according to
Figure (12)left reduces the rate dependent capacity.

Impact of the charging rate and fit to the experiments. For the comparison
with experiments we use the data from [41]. The particle size distribution of
the battery studied in [41] corresponds to the reference distribution of Figure 3.
Figure 13 shows a comparison of experimental and simulated voltage-capacity
curves for the charging rates C/25, 1C and 3C. The simulations are performed
without surface fluctuations, since their impact on the voltage is marginal as
discussed above. The active area used for this simulation corresponds to the
green curve in Figure 12left.

An increase of the charging rates reduces the rate dependent capacity.
Moreover, the height of the voltage plateau decreases for higher charging rates.
This is in good agreement with the experimental data. Although the many-
particle model is quite simple, with only two constant kinetic parameters,
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we observe good matches between simulations and experiments for slow and
moderate charging rates. Only for the fast charging rate 3C the simulation
shows some deviation from the measurement. This deviation might be due to
diffusion processes within the electrode particles or electrolyte, which are not
taken into account in the many-particle model.

Fig. 13 Comparison between simulation and experiment for different charging rates: C/25
(red), 1C (green), 3C (blue). Solid line – simulation, dashed line – experiment. Experimental
data taken from [41]

6 Thermodynamic model of a many-particle electrode and its
coupling to the surrounding

In this section both the SDE system and the cell voltage- current relation will
be derived on a thermodynamic basis. In a first step we describe an electro-
chemical system in a general thermodynamic framework. The model equations
are grouped into two different classes: i) universal equations of balance for
mass, momentum, energy and entropy and Maxwells equations and ii) consti-
tutive equations that describe the special material properties of the system at
hand.

We restrict ourselves to a non-viscous, isothermal, non-polarizable and non-
magnetizable systems where accelerations and the magnetic field can be ig-
nored, i.e. the temperature is assumed to be constant, the quasi-static version
of the momentum balance and the electrostatic approximation of Maxwells
equations are applicable.

Here we present only a brief introduction of the thermodynamic frame-
work, which is absolutely necessary to understand the derivation of the LFP
electrode model. A detailed description of non-equilibrium thermodynamics
and its coupling to electrodynamics can be found in [36,7,3,39,26].
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6.1 General thermodynamic setting

In the general setup we consider an arbitrary domain Ω that is separated by
a surface S into two subdomains Ω± so that S = ∂Ω+ ∩ ∂Ω−. In order to
indicate whether a generic quantity u is defined in the bulk domains Ω± or
on the surface S we write u± and us, respectively.

A point on S is equipped with a surface normal ν pointing by convention
into the domain Ω+.

The boundary ∂S of S is assumed to be a closed line on S that is charac-
terized by a unit vector e lying tangential to S and normal to ∂S.

Constituents and basic quantities. Within the domains Ω± and on the sur-
face S we have general mixtures consisting of (N± + 1) and (Ns + 1) con-
stituents, which are denoted by A0, A1, ..., AN± and As,0, As,1, ..., As,Ns . Each
constituent of Ω± is also present on S, but here there may be additional con-
stituents that are exclusively present on S, i.e. N+ + N− ≤ Ns. The set of
constituents of the bulk domains and of the surface are denoted by M± and
Ms, respectively. Further we assume that the constituents of the bulk do-
mains are different, i.e. M+ ∩M− = ∅. In case of identical chemical species
in both bulk domains, we treat these species as different constituents. This
is reasonable and necessary because a constituent may have different physical
and chemical properties in the domains Ω±.

The general thermodynamic setting is the same for both domains Ω±.
Thus for a simplified notation we omit the superscripts ± and indicate the
corresponding domains only if necessary.

The constituent A0 plays a special role. For example, in an liquid electrolyte
A0 indicates the solvent and in solid electrode A0 represents the constituent
forming the crystal lattice.

In the isothermal and electrostatic setting the thermodynamic state of the
bulk mixture is characterized by the number densities (nα)α∈M± , the barycen-
tric velocity v and the electric potential ϕ. On the surface the thermodynamic
state is given by the surface number densities (ns,α)α∈Ms , the barycentric sur-
face velocity vs and the surface electric potential ϕs. These variables may be
functions of time and space.

Each constituent Aα of the bulk or surface has the atomic mass mα and
may be carrier of charge zαe0, where zα is the charge number and e0 is the
elementary charge.

Among the surface constituents we may have Ms surface chemical reactions
of the general form

ai0As,0 + · · ·+ ains
As,Ns

Ris,f−−−⇀↽−−−
Ris,b

bi
0As,0 + · · ·+ bi

Ns
As,Ns

for i ∈ {1, · · · ,Ms} .

(31)

The constants aiα, b
i
α are positive integers and γiα = biα − aiα denote the sto-

ichiometric coefficients of the reaction i. Ris,f and Ris,b denote the forward
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and backward reaction rates, respectively. The net reaction rate is defined as
Ris = Ris,f −Ris,b.

Multiplication of the number densities nα by the masses mα gives the
partial mass densities in the bulk and on the surface:

ρα = mαnα and ρs,α = mαns,α . (32)

For the bulk and surface mixture, the mass densities are defined by

ρ =

N∑
α=0

ρα and ρs =

Ns∑
α=0

ρs,α . (33)

Finally, the free charge densities are defined by

nF =

N∑
α=0

zαe0nα and nFs =

Ns∑
α=0

zαe0ns,α . (34)

Jumps at the surface. We introduce the boundary values, the jump and the
mean value of a generic bulk function u(t, x) ∈ Ω± at S as

u|±S = lim
x∈Ω±→S

u and [[u]] = u|+S − u|
−
S and 〈u〉 = 1

2 (u|+S + u|−S ) .

(35)

In case that the function u is not defined in Ω+ or in Ω−, the corresponding
value in (35) is set equal to zero.

6.2 Balance of mass and momentum

Customarily non-equilibrium thermodynamics uses the local equations of bal-
ance. However, for the derivation of the SDE system it is convenient to use
the global version of the mass balances, i.e. in terms of integrals. On the other
hand, the momentum balances, Maxwell’s equations and the constitutive equa-
tions are still represented by their local forms.

Bulk mass balance. The determination of the mass densities ρα = mαnα relies
on the balance equations of mass. The mass of constituent Aα, α = 0, 1, ..., N ,
changes due to convection, diffusion and chemical reactions,

d

dt

∫
Ω

mαnα dx = −
∫
∂Ω

jα · ν da+

∫
Ω

rα dx with jα = ρα(v −w) + Jα .

(36)

The quantities rα are the mass production densities. Here we do not consider
chemical reactions in the bulk domains, i.e. we have rα = 0. The velocity of the
boundary ∂Ω is denoted by w and Jα is the bulk diffusion flux of constituent
Aα. To guarantee the total mass conservation the diffusion fluxes satisfy the
side condition [36,7,39]

N∑
α=0

Jα = 0 . (37)
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Surface mass balance. The surface mass density ρs,α = mαns,α, of the surface
constituent As,α is determined by surface mass balance equation,

d

dt

∫
S

mαns,α da = −
∫
∂S

js,α · e dl −
∫
S

[[jα · ν]] da+

∫
S

rs,α da. (38)

The line integral gives the tangential mass flux normal to the line ∂S into the
surface S, while the normal flux from the bulk domains across the surface S is
represented by the double bracket. The tangential mass flux density is denoted
by js,α and consists of convection and diffusion,

js,α = ρs,α(vτ,s −wτ ) + Js,α , (39)

where vτ,s and wτ represent the tangential parts of the surface barycentric
velocity vs and of the surface velocity w of S, respectively. The tangential
diffusion flux of constituent As,α on S is denoted by Js,α. As in the bulk the
diffusion fluxes must satisfy the side condition

Ns∑
α=0

Js,α = 0 . (40)

The third term on the right hand side of (38) represents surface chemical
reactions with surface mass production densities rs,α. The production densities
are related to the reaction rates by

rs,α =

Ms∑
i=1

γis,αmαR
i
s . (41)

Bulk momentum balance. In the quasi-static setting the Cauchy stress σ of
the matter is balanced by the electrostatic force −nF∇ϕ,

−div(σ) = −nF∇ϕ in Ω . (42)

Here the force density due to gravitation is ignored. An alternative formulation
of the momentum balance reads, [39,16],

divΣ = 0 in Ω , (43)

where the newly introduced quantity Σ is the total stress tensor,

Σ = σ + ε0
(
∇ϕ⊗∇ϕ− 1

2 |∇ϕ|
21
)
. (44)

Surface momentum balance. The quasi-static surface momentum balance equa-
tion is represented by, [39,6],

[[Σ · ν]] = −2kMγsν −∇sγs on S , (45)

where γs denotes the surface tension and kM is the mean curvature of the
surface S.
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6.3 Maxwells equations and electric current

In the quasi-static regime Maxwells equations are significantly reduced. The
equations for the electric field E can be solved by introducingan electric po-
tential ϕ,

E = −∇ϕ . (46)

Without polarization the solely relevant Maxwell equation in the bulk is the
Poisson equation,

div(ε0E) = nF . (47)

The quantity ε0 is the dielectric constant. Maxwells equations for the surface
S separating the bulk domains Ω± are satisfied by (i) a continuous electric
potential,

ϕs = ϕ|+S = ϕ|−S (48)

and (ii) by the jump condition for the electric field

[[ε0E]] · ν = nFs . (49)

A further crucial equation in electrochemical systems is the electric charge
balance,

d

dt

∫
Ω

nedx = −
∫
∂Ω

je · ν da with je = ne(v −w) + Je . (50)

where ne is the electric charge density and Je is the electric current density.
In a non-polarizable and non-magnetizable system charge density and electric
current density are represented by

ne = nF and Je =

N∑
α=0

zαe0
mα

Jα , (51)

i.e. they are determined by the number densities and the diffusion fluxes of
the constituents. For the surface S the corresponding charge balance reads

d

dt

∫
S

nes da = −
∫
∂S

jes · e dl −
∫
S

[[je · ν]] da with jes = nes(vτ,s −wτ ) + Je
s .

(52)

In an analogous manner to the bulk the surface electric charge density nes
and the surface electric current density Je

s are given in a non-polarizable and
non-magnetizable system by

nes = nFs and Je
s =

Ns∑
α=0

zαe0
mα

Js,α . (53)
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6.4 Constitutive model

The balance equations for mass and momentum have to be supplemented by
constitutive equations for the mass fluxes Jα, Js,α and for the surface reaction
rates Ris. The constitutive equations are restricted by the principle of material
objectivity and the 2nd law of thermodynamics consisting of a list of axioms.
In the following most results are derived in [7,3,4,26].

Free energy, chemical potentials and electrochemical potentials. The crucial
quantities of a constitutive model are the free energy functions for bulk and
surface materials. The free energy functions must be given at first. Then all
other constitutive quantities can be represented by the free energy functions
and their derivatives in a thermodynamically consistent manner. For the dif-
ferent mixtures of the current study we use free energy functions of the general
form

ρψ = ρψ(T, ρ0, . . . , ρN ) and ρsψs = ρsψs(Ts, ρs,0, . . . , ρs,NS ) . (54)

Note that in non-polarizable and non-magnetizable materials, the free energy
functions do not explicitly depend on the electromagnetic fields. The inter-
ested reader might consult [39,17,26] where more details on polarization and
magnetization can be found. In the isothermal setting surface temperature Ts
and bulk temperature T are constant and equal in each phase. Therefore the
temperature occurs here only as a constant parameter.

The chemical potentials of bulk and surface materials are defined by

µα =
∂ρψ

∂ρα
and µs,α =

∂ρsψs
∂ρs,α

. (55)

In addition to the chemical potentials there are electrochemical potentials
which play the central role in the constitutive equations, particularly in the
isothermal case. The electrochemical potentials are defined by

µeα = µα + zαe0
mα

ϕ and µes,α = µs,α + zαe0
mα

ϕs . (56)

Diffusion fluxes for the bulk domains. The N + 1 diffusion fluxes Jα must
satisfy the side condition (37) so that only N constitutive equations can be
given. In the isothermal setting the 2nd law of thermodynamics is guaranteed
by the choice [7]

Jα = −Mα∇(µeα − µe0) , α = 1, · · · , N . (57)

The mobility coefficients Mα > 0 are non-negative material parameters.
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Cauchy stress tensor and pressure. For simplicity, we assume that the viscosity
has a minor impact on the battery performance and can be neglected. Then the
simplest thermodynamically consistent constitutive equation for the Cauchy
stress tensor reads

σ = −p1 , (58)

where p is the material pressure satisfying the Gibbs-Duhem equation

p = −ρψ +

N∑
α=0

ραµα . (59)

Diffusion fluxes for the surface S. The equations of surface mass balances (38)
have to be supplemented by constitutive equations for the tangential diffusion
fluxes Js,α and the normal components of the mass fluxes jα. As in the volume
the surface constitutive relations are related to the surface electrochemical
potentials. We choose the following thermodynamically consistent constitutive
equations for the mass fluxes, [3,26],

Js,α = −Ms,α∇s(µes,α − µes,0) , α = 1, · · · , Ns , (60a)

jα · ν|±S = ∓M±s,α
(
(µeα − µe0)|±S − (µes,α − µes,0)

)
, α = 1, · · · , N± ,

(60b)

ρ(v −w) · ν|±S = ∓L±s (µe0|±S − µ
e
s,0 ± f±) , (60c)

where Ms,α, L±s and M±s,α denote non-negative material parameter, the so
called kinetic coefficients. These constitutive equations embody surface diffu-
sion, (60a), and adsorption from the bulk to the surface S, (60b) and (60c).
The newly introduced quantities f± will be used to model stochastic processes
on the particle surfaces in Section 6.9 .

Note that the surface constitutive equations (60b) and (60c) depend on the
constitutive assumptions that were made for the bulks, [3,26]. For example,
if we were to consider a viscous material so that viscous term occurs in the
constitutive equation for the Cauchy stress (58), then additional viscous terms
would likewise arise in the constitutive equation (60c).

Surface tension. The constitutive equation for the surface tension is similar
to the Gibbs-Duhem equation for the pressure in the bulk,

γs = ρsψs −
Ns∑
α=0

ρs,αµs,α . (61)
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Surface reaction rates. We use a linear relation between the reaction rate and
the corresponding driving force,

Ris = −Ri0
NS∑
α=0

γis,αmαµ
e
s,α . (62)

The kinetic coefficients Ri0 > 0 are called exchange rates.
We refer the reader to [4,17,18] where exponential non-linearities of Arrhenius-

type were introduced in the constitutive equations for the surface reaction rates
so that Butler-Volmer type equations come out instead of (62).

6.5 Introduction of stochastic objects in the constitutive model

The constitutive equations for the mass fluxes, reaction rates and stresses have
been chosen so that the entropy production becomes a non-negative bilinear
form which is zero in equilibrium. In this sense the constitutive equations are
compatible with the 2nd law of thermodynamics.

The introduction of the quantities f± in the total mass fluxes (60c) is
crucial in this work. For this reason we describe here the essential steps for
the derivation of the constitutive relations (60b) and (60c).

Let us consider the entropy production ξνs due to the normal fluxes of
momentum, heat and mass across the interface:

ξνs =
1

Ts

[[(
σij −

(
ρψ −

N∑
α=0

ραµα

)
δij −

(
Tsρ
(µe0
T −

µes,0
Ts

))
δij
)

(vi − vis)νj
]]

+
[[(
qν +

(
Tρη +

N∑
α=0

ραµα
)
(vν − wν)

)( 1

T
− 1

Ts

)]]
−
[[ N∑
α=1

jα,ν

(
1
T (µeα − µe0)− 1

Ts
(µes,α − µes,0)

)]]
. (63)

A derivation of the entropy production including tangential fluxes and surface
reaction can be found in [3] and in the full case of coupled electro- and thermo-
dynamics in [26]. Here qν denotes the normal heat flux and ρη is the entropy
density of the corresponding bulk domains. The entropy density is related to
the free energy by ρη = −∂ρψ/∂T .

The entropy production can be extended by the following observation. The
substitution

µeα|±S → µeα|±S + f̂± (64)

leaves the surface entropy production invariant. Here f̂± are arbitrary func-
tions of time and space defined at S that do not depend on the constituent
index α.



32 Clemens Guhlke et al.

Next we insert the constitutive equations (58) and (59) for the stress tensor
and the pressure, respectively, in (63). Then we choose linear relations for the
normal fluxes and obtain the relations

ρ(v −w) · ν|±S = ∓L±s Ts(
µe0
T |
±
S −

µes,0
Ts

+ f±) , (65)(
qν +

(
Tρη +

N∑
α=0

ραµα
)
(vν − wν)

)
|±S = ±

(
κ±s ∓

(
ρ(vν − wν)f

)
|±S
)( 1

T |±S
− 1

Ts

)
,

(66)

jα · ν|±S = ∓M±s,αTs
(
1
T (µeα − µe0)|±S −

1

Ts
(µes,α − µes,0)

)
,

(67)

where we have replaced f̂ by f which is defined as f = ( 1
T |±S
− 1

Ts
)f̂ . Here we

are only interested in the isothermal case, thus we set κ±s →∞. Furthermore

we assume that f̂ is non-zero in the isothermal case. Thus we have a continuous
temperature across the interface,

Ts = T |±S . (68)

Then we obtain the constitutive equations (60b), (60c).

6.6 Special cases of the constitutive model

The constitutive equations for the mass fluxes can be written in the general
form

F = KD , (69)

where F represents a mass flux, K > 0 is the corresponding kinetic coefficient
and D denotes the corresponding thermodynamic driving force.

In this section we consider two important regimes where the kinetic coeffi-
cients of the constitutive equations for the mass fluxes assume extreme values,
viz.

– K → 0 slow regime for diffusion and adsorption ,
– K →∞ fast regime for diffusion and adsorption.

In the slow regime K → 0 the flux is zero and the driving force is independent
of the flux. In the fast regime K → ∞ the driving force is zero and the flux
is determined by the balance equations. In particular the fast regime leads to
some implications, which we study now in more details.
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Infinite bulk mobilities. If the bulk mobility is very large, the fast regimeMα →
∞ is appropriate. For finite diffusion fluxes we must have

∇(µeα − µe0) = 0 , α = 1, 2, ..., N . (70)

The equations (70) can be further simplified by the condition

N∑
α=0

mαnα∇µeα = 0 . (71)

This condition follows from a combination of (i) an identity between the spatial
gradients of chemical potentials, (ii) the Gibbs-Duhem equation, and (iii) the
local form of the quasi-static momentum balance [16].

Inserting (70) into (71) leads to

∇µeα = 0 , α = 0, 1, ..., N . (72)

Thus the electrochemical potentials µeα are the same in every point of the
mixture.

Infinite surface mobilities. If the surface mobility is very large, the fast regime
Ms,α → ∞ is appropriate. In an analogous manner as in the last paragraph
we obtain constant surface electrochemical potentials,

∇s µes,α = 0 , α = 0, 1, ..., Ns . (73)

We conclude that the surface electrochemical potentials µes,α assume the same
value in every point of a surface S.

Fast adsorption. The rate of an adsorption process, i.e. the transport of bulk
matter to the surface, is determined by the kinetic coefficients L±s and M±s,α.
We talk about fast adsorption of constituent A0 if L±s assumes a large value.
In the fast regime L±s →∞, we have

µe0|±S − µ
e
s,0 + f± = 0 . (74)

Insertion into the constitutive equations (60b) of the other constituents then
yields

jα · ν|±S = ∓M±s,α(µeα|±S − µ
e
s,α + f±) . (75)

If additionally the constituents Aα were also fast adsorbed so that the fast
regime M±s,α →∞ is appropriate, the adsorption relation (75) would implying

µeα|±S − µ
e
s,α + f± = 0 . (76)

However the latter case is not considered here.
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6.7 Application of the thermodynamic model to the LFP electrode

In this section we apply the thermodynamic model to the electrochemical cell
presented in Figure 1. To this end several assumptions on both the balance
equations and the kinetic coefficients are involved to simplify the general ther-
modynamic model of the last section. The final result will be the LFP electrode
model introduced in Section 3.

Composition. The electrochemical cell consists of the many-particle cathode,
an electrolyte and a metallic lithium anode as shown in Figure 1 and described
in Section 2. For the modeling we decompose the total domain of the cell into
volume domains and surface domains.

The NP LFP particles occupy the volume domains Ωi, i = 1, 2, ..., NP. The
volume domains of the metallic substrate of the cathode, the electrolyte and
the anode are denoted by ΩC, ΩE and ΩA, respectively.

The total domain is bounded by the upper and lower surfaces SU and SL
and by the two electrode surfaces SA and SC. A LFP particle Pi has a common
interface with the electrolyte, SiE, and may have an interface with another
particle Pj , which is indicated by Sij . Moreover, the particle Pi may be in
contact with the metallic substrate of the cathode via the interface SiC. Thus
the total interface of a particle Pi is given by Si = SiC ∪ SiE ∪

∑
j S

ij , where

the sum runs over all particle-particle interfaces of particle Pi. The interface
between the metallic substrate of the cathode and the electrolyte, and the
interface between the anode and the electrolyte are denoted by SCE and SAE
respectively.

By convention the normal vector ν of the surfaces SiE, SCE, SAE always
points into the electrolyte. The normal vector of the surface SiC points into the
metal substrate.

Each of the four bulk materials are mixtures with the following constituents:
The metal substrate of the cathode and the lithium anode are binary mixtures
of metal ions and electrons. We have (Al+, e−) in the metal substrate of the
cathode and (Li+, e−) in the anode. A LFP particle is formed by the FePO4

lattice and neutral lithium atoms Li. The constituents of the electrolyte are
the lithium cations, Li+, a solvent S and anions A−. The constituent A0 in-
dicates (i) FePO4 in the LFP particles, (ii) the metal ions Al+ and Li+ in
cathode and anode, respectively, and (iii) the solvent in the electrolyte.

As assumed in the general setting the constituents of the bulk domains
are likewise present on the various interfaces. Moreover, the carbon coating of
the LFP particles is a part of the LFP surface. Therefore we have additional
surface constituents, viz. (i) C+ and free electrons e− on the LFP surfaces.

On the LFP surfaces only one chemical reaction is considered,

Li+ + e− −−⇀↽−− Li on Si . (77)

Model equations for the LFP particles. The masses of lithium and iron phos-
phate within a particle Pi changes due to the normal component of the fluxes
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jLi and jFePO4
, respectively. The corresponding mass balances (36) read

d

dt

∫
Ωi
ρLi dx = −

∫
Si
jLi · ν da ,

d

dt

∫
Ωi
ρFePO4

dx = −
∫
Si
jFePO4

· ν da .

(78)

The surface Si of particle Pi consists of subsurfaces, viz. Si = SiC∪SiE∪
∑
j S

ij .
To simplify the mass balances and to specify the lithium flux for the various

subsurfaces of the particles we make the following assumptions:

A1 The phase transition within a single LFP particles is not observable on the
time scale of charging/discharging.

A2 The diffusion of lithium within the LFP particles is fast, i.e. we assume
that the fast diffusion regime applies in Ωi.

A3 There is no lithium exchange between the metal cathode substrate and the
particles, i.e. the slow regime for lithium adsorption applies at SiC.

A4 The contact surface between to particles i and j is small compared to the
total particle surface, thus the lithium exchange between to neighboring
particles can be ignored. The slow regime for lithium adsorption applies
on Sij .

A5 The surface constituent FePO4 is in equilibrium with the bulk constituent
FePO4 of the particles, i.e. we assume that the fast adsorption regime for
FePO4 adsorption applies on the LFP particle surface Si.

Due to Assumptions A1 and A2 we can apply the reasoning leading to equation
(72) of Section 6.6. The chemical potentials within the LFP particles (72) are
constant in space, thus

∇µLi = 0 and ∇µFePO4
= 0 in Ωi . (79)

The chemical potentials µLi and µFePO4
only depend on the number densities

of lithium and iron phosphate. We conclude

∇nLi = 0 and ∇nFePO4
= 0 in Ωi . (80)

Thus Assumptions A1 and A2 imply that the particles are homogeneous. Note
that the value of the number densities depends on the particle index, i.e the
number densities assume different values in the particles.

Moreover Assumptions A3 and A4 imply that the normal component of
the lithium fluxes are zero at SiC and Sij . Thus we have

mLi
d

dt
(V iniLi) = −

∫
SiE

jLi · νda and mFePO4

d

dt
(V iniFePO4

) = −
∫
SiE

jFePO4
· νda .

(81)

Due to Assumption A4 for FePO4 we obtain the adsorption relation

µFePO4
− µs,FePO4

+ f− = 0 on SiE. (82)
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Then the lithium flux on SiE is given by

jLi · ν|−SiE = mLi

kBT
kLi(µLi − µs,Li + f−) on SiE with kLi = M−s,Li

kBT
mLi

.

(83)

Two remarks: i) Li and FePO4 have no electric charge, thus in equations
(82) and (83) the electrochemical potentials are equal to the chemical poten-
tials. ii) Up to now only the bulk chemical potentials µα are constant in space,
the surface quantities µs,α and f− may still variate on the particle surface.

Model equations for surfaces of the LFP particles. Next we apply the surface
mass balance (38) for lithium to the surface Si of particle Pi.

For its exploitation we introduce further assumptions:

A6 The tangential transport of the surface constituents Li,Li+, e−, S,A− is
fast, i.e. we apply the fast regime for surface diffusion.

A7 The surface constituents C+ and FePO4 move with the particle surfaces,
i.e. the tangential fluxes js,C, js,FePO4

are zero.
A8 On Si the changes in the masses of all surface constituents are determined

by stationary processes.
A9 The chemical reaction Li++e− −−⇀↽−− Li exclusively occurs on the subsurface

SiE.

A common exploitation of Assumptions A6 and A7 and the reasoning from
Section 6.6 imply that the surface electrochemical potentials µes,α do not de-

pend on the position of the surface Si,

∇sµes,α = 0, for α = Li,Li+, e−,C+, S,A−,FePO4 on SiC, S
i
E, S

ij . (84)

The Assumptions A8 and A9 simplify the surface mass balances for surface
constituents. For α = Li,Li+, e−, S,A− we obtain∫
∂S

js,α · e dl = −
∫
S

[[jα · ν]] da+mαγs,α

∫
S

Rs da for S = SiC, S
i
E, S

ij .

(85)

These equations are used to determine the corresponding tangential fluxes
js,α. The Assumptions A7 and A8 yield that the surface mass balance for C+

is identically satisfied, and we have for FePO4∫
S

jFePO4
· ν da = 0 for S = SiC, S

i
E, S

ij . (86)

Finally due to equation (62) and Assumption A7 the surface reaction rate
reads

Rs = RE
0(mLi+µ

e
s,Li+ +me−µ

e
s,e− −mLiµ

e
s,Li) on SiE . (87)
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Model equations for the electrolyte. The boundary of the electrolyte domain
ΩE is given by SE =

∑
i S

i
E ∪ SCE ∪ SAE ∪ SU ∪ SL.

We characterize the electrolyte by the following assumptions:

A10 The diffusion of the electrolytic constituents is fast.
A11 The masses of the electrolytic constituents are determined by a stationary

process.
A12 There is no adsorption on the surface SCE of the metallic substrate and on

the upper and lower surfaces SU and SL, respectively. Thus we assume for
the electrolytic constituents the slow adsorption regime at SCE, SU, SL.

A13 On both the particle-electrolyte surface SiE and the anode substrate surface
SAE we have fast adsorption of the solvent and the anions.

A14 The quantity f+ is set to zero at the anode surface, i.e. we ignore stochastic
effects on the anode surface.

According to Section 6.6 the fast diffusion regime, Assumption A10, implies
constant electrochemical potentials of the electrolyte species,

∇µeα = 0 for α = Li+, A, S in ΩE . (88)

In contrast to the LFP particles there are charged constituents in the elec-
trolyte. Thus we cannot replace the electrochemical potentials by the chem-
ical potential. Moreover we cannot conclude that the corresponding number
densities are constant.

Assumptions A11 and A12 simplify the bulk mass balance in the electrolyte
to

0 =

NP∑
i=1

∫
SiE

jα · ν da+

∫
SAE

jα · ν da α = Li+, A, S . (89)

Finally due to Assumption A13 the anions and the solvent must satisfy

µeα − µe
s,α + f+ = 0 for α = A,S on SiE , SAE . (90)

Then the adsorption fluxes of lithium are represented by

jLi+ · ν|+SiE = −ME
s,Li+(µeLi+ − µ

e
s,Li+ + f+) on SiE , (91)

jLi+ · ν|+SAE
= −MAE

s,Li+(µeLi+ − µ
e
s,Li+) on SAE . (92)

Note that we may have different kinetic coefficients Ms,Li+ on SiE and SAE. This
is indicated by the superscripts. The representation (92) relies on Assumption
A14.

Model equations for the electrolyte-anode interface. Both the electrolyte and
the metal lithium anode contain lithium ions with the same electric charge
number. Nevertheless lithium ions in the liquid electrolyte and the solid lithium
anode are treated as different constituents in this model because lattice ions
have different electrochemical properties as solute ions. At the interface SAE the
different lithium ions are indicated by the subscripts E and A. The electrolytic
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lithium ions Li+E can freely move on SAE whereas the metallic lithium ions of
the anode Li+A are fixed in the crystal lattice of the lithium metal. In this
context on the anode surface SAE we have the surface reaction

Li+E −−⇀↽−− Li+A on SAE . (93)

The surface SAE is characterized by the assumptions

A15 The tangential surface transport of all surface constituents is fast, i.e. the
fast regime for surface diffusion is assumed.

A16 On SAE the masses of all surface constituents are determined by a stationary
processes, and there is no tangential mass flux over the boundary ∂SAE.

Assumption A15 implies that the surface electrochemical potentials do not
depend on the surface point,

∇sµes,α = 0 for α = Li+A ,Li+E , e
−, A, S on SAE. (94)

Assumption A16 yields for the electrolytic constituents

0 = −
∫
SAE

jLi+E
· ν da−mLi+

∫
SAE

Rs,AE da and 0 =

∫
SAE

jα · ν da α = A,S ,

(95)

and for the anode constituents

0 =

∫
SAE

jLi+A
· ν da+mLi+

∫
SAE

Rs,AE da and 0 =

∫
SAE

je− · ν da . (96)

According to (62) the reaction rate Rs,AE reads

Rs,AE = RAE
0 mLi+(µe

s,Li+E
− µe

s,Li+A
) on SAE . (97)

Model equations for the metal substrate-electrolyte interface. Here we assume

A17 The tangential transport of all surface constituents on SCE is fast, i.e. we
apply the fast regime for surface diffusion.

This Assumption implies that on SCE the electrochemical potentials are con-
stant in space,

∇sµes,α = 0 for α = Al+, e−,Li+, A, S on SCE . (98)
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Model equations for the metals. Both the anode and the substrate of the cath-
ode are metals. We assume

A18 The diffusion of the electrons is fast.
A19 There is global charge neutrality in both metals.
A20 On metal surfaces we have fast adsorption of both electrons and metal ions.

Assumption A18 implies in the bulk domains

∇µeα = 0 α = e−,Li+,Al+ in ΩA, ΩC . (99)

We conclude from Assumption A19 that the volume integral under the time
derivative of the charge balance (50) vanishes. Thus the charge balance for the
anode reads

0 =

∫
SA

je · ν da+

∫
SAE

je · ν da . (100)

The charge balance for the metal substrate of the cathode is represented in a
similar manner.

Assumption A20 is now applied to the constitutive equations (60b) and
(60c) for adsorption. For the anode it follows

µeα = µes,α α = e−,Li+ on SAE, SA , (101)

and for the metal substrate of the cathode we obtain

µeα = µes,α α = e−,Al+ on SiC, SC, SCE . (102)

Properties of electrochemical potentials at the contact lines. So far our ther-
modynamic model exclusively treated bulk and surface domains. Additionally
we meet contact lines between the different subsurfaces. However, here we will
not enter a careful thermodynamic treatment of line phenomena, rather we
simply proceed with the Assumption

A21 The electrochemical potentials of electrons, lithium ions and lithium atoms
of the two intersecting surfaces are continuous at the corresponding contact
line.

This assumption can be derived within thermodynamics of lines if one assumes
that the contact line is itself not a carrier of mass, momentum and energy.

The Assumption A21 has far-reaching consequences here: The surface elec-
trochemical potentials of electrons, lithium ions and lithium atoms, respec-
tively, assume the same values on the LFP particle surfaces, i.e. they do not
depend on the particle index,

µes,α|Si = µes,α for α = e−,Li+,Li on Si . (103)
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Remarks on the momentum balance equation. At first glance the reader may
think that until now the momentum balance has not been used. However,
this is not the case. In particular, the exploitation of the fast diffusion regime
heavily relies on the momentum balance. For example, the momentum balance
is needed to conclude that ∇(µeα−µe0) = 0 for α = 1, 2, ..., N implies ∇µeα = 0
for α = 0, 1, 2, ..., N , see [16,17] for more details.

Constitutive theory. Until now explicit constitutive equations for the chemical
potentials and the pressure were not needed. Moreover an inspection of the
model equations reveals that in this study explicit constitutive equations are
exclusively needed for the LFP particles. These will be given now. Recall both
chemical potentials and pressure are derived from a single free energy function.
In [13,14] a free energy function for LFP is introduced, incorporating (i) the
mixing entropy of the distribution of lithium over the interstitial lattices sites
of the iron phosphate lattice and (ii) the mechanical deformation of LFP due to
the intercalation process. The resulting representations of chemical potentials
and the pressure are

µLi = µref
Li (T, p) + 1

mLi

(
L(1− 2y) + kBT

(
ln(y)− ln(1− y)

) )
, (104)

µFePO4
= µref

FePO4
(T, p) + 1

mFePO4

(
Ly2 + kBT ln(1− y)

)
, (105)

p = pref +K
(
(vrefFePO4

nFePO4
+ vrefLi nLi)− 1

)
, (106)

where we have introduced the lithium mole fraction y = nLi/nFePO4
. The ref-

erence chemical potentials µref
α are in general function of temperature and pres-

sure. Here the µref
α are calculated by µref

Li (T, p) = gLi(T )+vLi(p
ref+K ln(p−p

ref

K +

1)) and µref
FePO4

(T, p) = gFePO4
(T ) + vFePO4

(pref +K ln(p−p
ref

K + 1)). Thus the
temperature dependence is left unspecified and the pressure contribution de-
scribes linear elastic behavior with volume expansion due to intercalation. The
positive constants vrefFePO4

and vrefLi are the specific volumes of iron phosphate

and lithium in LFP. Here pref is a reference pressure and K is the bulk mod-
ulus of LFP. In general the bulk modulus is a function of the lithium content
in LFP. For simplicity this is ignored here and K is assumed to be constant.

Volume expansion and surface momentum balance. The intercalation of lithium
into the iron phosphate lattice is accompanied by a volume expansion. This is
incorporated into the model by the constitutive relation (106). In this study,
however, we want to keep the model as simple as possible and neglect the
volume expansion. We thus assume

A22 The volume expansion due to intercalation of lithium is negligible, i.e. we
set vrefLi = 0.

It is important to note that the pressure in each particle is still different due to
surface tension and mean curvature of the particles. To avoid this complexity a
further model simplification becomes necessary. It concerns the surface balance
of momentum (45). We assume
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A23 The normal component of the total stress Σ is continuous at the particle
surfaces Si, i.e.

[[ν ·Σ · ν]] = 0 at Si . (107)

This assumption is satisfied if the product of mean curvature and surface stress
is small compared to the total stress.

The outer pressure p0 acting on the cell surface, i.e. the pressure on SC ∪
SA∪SU∪SL, is constant. Under the Assumptions A22 and A23 the momentum
balance equation yields that the pressure within each particles is given by the
outer pressure,

p = p0 . (108)

This implies that the particle density nFePO4
of the iron phosphate lattice of

the particles is determined by the constant specific volume,

nFePO4
= (vrefFePO4

)−1 for all Ωi . (109)

Moreover we conclude from the mass balance equations (81) and (86) of FePO4

that the volumes of the LFP particles are time independent,

d
dtV

i = 0 for all i = 1, . . . , NP . (110)

Constant number density of iron phosphate and constant pressure within the
particles imply that the chemical potentials of lithium only change if the
lithium mole fraction y = nLi/nFePO4

changes,

µLi = µLi(y) . (111)

6.8 Evolution equations for the lithium mole fractions of the LFP electrode
model

The balance equation (81) and the corresponding constitutive equation for the
mass flux (83) form the basis of the LFP electrode model.

Due to the assumptions of the last subsection, the lithium mass flux normal
to the surface SiE is spatially constant if we assume a spatially constant f− on
SiE,

jLi · ν|−SiE = mLi

kBT
kLi

(
µLi(y

i)− µs,Li + f i,−
)

at SiE . (112)

Finally we use (109),(110) and (112) so that the lithium mass balance
equations (83) becomes the central evolution equation of this study: For i =
1, . . . , NP

dyi

dt
=

1

τ i
mLi

kBT

(
µs,Li − µLi(y

i)− f i,−
)

with
1

τ i
=

kLi
mLinFePO4

AiE
V i

. (113)

Taking

f i,− =
TkB
mLi

(√ 2

τ i
νiẆ i − Ż

)
(114)

we find the SDE system (12) that we were looking for.
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6.9 Wiener process

In this section we clarify the meaning of the term Ẇ i that appears in the
expression (114) for the average of f i,−. This is formally the white noise, that
is the time derivative of a Brownian motion W (introduced in Section 3.2).
Now such a derivative is not well-defined: as well-known, the typical paths of
the Brownian motion are continuous but not differentiable. However equation
(12) makes still sense: from a mathematical perspective, (12) does require only
the definition of W , not of its derivative, moreover the SDE theory allows to
control the so-called Itô integrals (

∫ t
0
XdW for certain stochastic processes X)

even if dW is not defined.
From a physical perspective, one should think of f−,i not as the (scaled)

white noise but as a suitable approximation of it (that is, one should replace
Ẇ i by the time derivative of a smooth approximation of the Bronwian motion
W i). Possible drawbacks may come from guaranteeing compatibility with other
assumptions: for example, equation (82), for f−,i approximation of white noise,
implies that µs,FePO4

should also be a highly oscillating functions assuming
large values. We do not discuss these issues here.

6.10 Charge transport

The charge is transported by the lithium ions from the anode to the cathode,
whereby the electrons have to flow through an electric device. The electric
device is connected to the battery via the surfaces SA and SC.

We define the electric current I of the battery by the electric current density
je which flows through the outer anode surface SA., viz.

I =

∫
SA

je · ν da with je =
∑

α=e−,Li+

e0zα
mα

jα . (115)

Using the mass balances (100), (95), (96), (89) and (85) we conclude

I =
e0
mLi+

∫
SAE

jLi+ ·ν da = − e0
mLi+

NP∑
i=1

∫
SiE

jLi+ ·ν da = − e0
mLi

NP∑
i=1

∫
SiE

jLi ·ν da .

(116)
In a further step we replace the lithium fluxes of the electrolyte side by the
fluxes of stored lithium in the LFP particles. To this end we use equation (81)
and then obtain a relation between the current and the total lithium mole
fraction that we seek for,

I = e0nFePO4
VP

d

dt

( NP∑
i=1

V i

VP
yi
)

= e0nFePO4
VP
dq

dt
. (117)

This equation expresses the intuitive relation that the electric current is di-
rectly related to the amount of stored lithium in the ensemble of LFP particles.
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A further important observation is that the relation (117) is exclusively
derived from balance equations. Thus the equation (117) is independent of the
constitutive equations and especially of the materials at hand. Note, we have
assumed that the mass balances at the surfaces, in both metals and electrolyte
are stationary. This implies that the electric charge is exclusively stored in the
LFP particles. In particular without the stationary balance equations for the
LFP particles, a surface contribution would appear in (117).

6.11 Battery voltage

The electric potential difference between the metallic substrate of the cathode
at the surface SC and of the anode at SA defines the cell voltage

U = ϕ|SC
− ϕ|SA

. (118)

Herein we use the electrochemical potentials, µeα = µα + e0zα
mα

ϕ, for the elec-
trons in the substrate of the cathode and for lithium ions in the anode to
obtain

U =
me−

e0
(µe− − µee−)|SC

+
mLi+

e0
(µLi+A

− µe
Li+A

)|SA
. (119)

The assumptions of fast diffusion and fast adsorption for the electrons in the
cathode imply that its electrochemical potential µee− is the same everywhere
in the cathode where electrons exist. In particular we have µes,e− |SE

= µee− |SC
,

where SE is an abbreviation for SE = ∪iSiE. The fast diffusion assumption for
the anode implies that the electrochemical potential of the lithium ions in the
anode is everywhere the same and thus we have µe

s,Li+A
|SAE

= µe
Li+A
|SA

.

Thus we may write

U =
me−

e0

(
µe− |SC

− µes,e− |SE

)
+

mLi+

e0

(
µLi+A
|SA
− µe

s,Li+A
|SAE

)
. (120)

In order to generate differences that can be represented by adsorption fluxes
and the reaction rate, respectively, we add some new terms that cancel each
other,

U = 1
e0

(
mLi+µLi+A

|SA
+me−µe− |SC

)
− 1

e0

(
mLi+µ

e
s,Li+A
|SAE
−mLi+µ

e
s,Li+ |SAE

)
− 1

e0

(
mLi+µ

e
s,Li+ |SAE

−mLi+µ
e
Li+ |

+
SAE

)
− 1

e0

(
mLi+µ

e
Li+ |

+
SAE
−mLi+µ

e
Li+ |

+
SE

)
− 1

e0

(
mLi+µ

e
Li+ |

+
SE
−mLi+µ

e
s,Li+ |SE

)
− 1

e0

(
mLi+µ

e
s,Li+ |SE

+me−µ
e
s,e− |SE

−mLiµ
e
s,Li|SE

)
− mLi

e0

NP∑
i=1

AiE
AE

(µes,Li − µeLi)|SiE −
mLi

e0

NP∑
i=1

AiE
AE

µeLi|SiE . (121)
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Next we use the relations (97),(92),(88),(91),(87), (83) and (111) to replace in
(121) the chemical potential differences,

U = 1
e0

(
mLi+µLi+A

|SA
+me−µe− |SC

)
1

e0RAE
0
Rs,AE

−
mLi+

e0MAE

s,Li+

1
AAE

∫
SAE

jLi+ · ν da

+
mLi+

e0ME

s,Li+

NP∑
i=1

AiE
AE

(jLi+ · ν)|SiE + mLi

e0

NP∑
i=1

AiE
AE
f+|SiE

− 1
e0RE

0
Rs

+ kBT
e0

1
kLi

NP∑
i=1

AiE
AE

jLi · ν|SiE −
mLi

e0

NP∑
i=1

AiE
AE
f−|SiE −

mLi

e0

NP∑
i=1

AiE
AE
µLi(y

i) .

(122)

Note that a choice of the function f+ has not been made up to now. Therefore
we can use f+ = f− to eliminate f− in (122). In the next step we replace
the mass fluxes and the reaction rate by the current I. To this end we use the
equations (95), (116) and (85) and obtain

U = 1
e0

(
mLi+µLi+A

|SA
+me−µe− |SC

)
−
(

1
e20R

AE
0

1
AAE

+
(mLi+ )2

e20M
AE

s,Li+

1
AAE

+
(mLi+ )2

e20M
E

s,Li+

1
AE

+ 1
e20R

E
0

1
AE

+ mLikBT
e20

1
kLi

1
AE

)
I

− mLi

e0

NP∑
i=1

AiE
AE

µLi(y
i) . (123)

Finally we introduce the abbreviations

U ref = 1
e0

(
mLi+µLi+A

|SA
+me−µe− |SC

−mLiµ
ref
Li

)
(124)

and

jPic = e0
mLi

kLi , jPad =
e0kBTM

E

s,Li+

(mLi+ )2 , jPre = e0kBTR
E
0 ,

jAde = e0kBTR
AE
0 , jAad =

e0kBTM
AE

s,Li+

(mLi+ )2 . (125)

Then we obtain a relation that relates the thermodynamic state of the elec-
trochemical cell to the voltage,

U = U ref − mLi

e0

NP∑
i=1

AiE
AE

(
µLi(y

i)− µref
Li

)
− kBT

e0
1
AE

(
1
jPad

+ 1
jPre

+ 1
jPic

)
I − kBT

e0
1
AAE

(
1
jAde

+ 1
jAad

)
I .

(126)
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7 Discussion and outlook

Noise is thermodynamically consistent introduced in the stochastic many-
particle model. This is a remarkable feature because up to now there was
no possibility to apply non-equilibrium thermodynamics [36,7,39] on a scale
where stochastic fluctuations can be observed. For the first time we found that
stochastic objects exclusively can be introduced within surface thermodynam-
ics but not within non-equilibrium thermodynamics of the bulk. This fact fits
to the observation that stochastic effects are more likely to influence surface
phenomena rather than bulk phenomena. A prominent example concerns nu-
cleation processes.

Due to our assumptions from Section 2, which are fulfilled by high power
batteries, the relevant kinetic phenomena are reduced to pure surface phenom-
ena. For this reason we are able to embody the complex charging-discharging
process of a LFP electrode in a model of remarkable simplicity with few phe-
nomenological parameters. The dynamics of the many-particle electrode is only
controlled by two parameters: the intercalation rate kLi and the strength of
the stochastic fluctuations ν0. Consequently the experimental determination
of the two parameters is an easy task.

However, the battery voltage is controlled by further surface phenomena,
viz. surface reaction, adsorption and deposition at the lithium anode. The
careful derivation of the current-voltage relation (9) reveals that these three
phenomena only lead to a shift of the voltage plateau in the voltage-current
diagram if the charging rate changes. The magnitude of the shift is verified
by measurements [41], see Figure 13. Thus the rate dependent capacity of the
battery cannot originate from these surface phenomena. In our many-particle
model, where diffusion is ignored within both particles and electrolyte, the rate
dependent capacity can only originate from the intercalation of lithium into
the iron phosphate lattice which is accompanied by phase transition within
the many-particle ensemble of the electrode.

The many-particle model incorporates two different mechanisms for stochas-
tic effects: (i) particle size distribution and (ii) stochastic fluctuations on the
particle surfaces. From our simulations we conclude that the particle size dis-
tribution is the dominant stochastic effect in the electrode, particularly for the
description of the battery voltage. An impact of the stochastic fluctuations on
the phase transition is only observed in a slow charging regime. All simula-
tions performed with a particle size distribution already show a pronounced
phase separation. Moreover, the model is capable to predict the characteristic
voltage plateaus of LFP electrodes. In the case of single size LFP particles
stochastic fluctuations are necessary to initiate the phase transition but only
in a very low charging regime. For moderate and fast charging regimes the
single size particles behave identical and do not exhibit voltage plateaus.

A further prediction of our many-particle model concerns the ordering of
the phase transition by the particle size: small particles undergo the phase
transition first. However, the size distribution effect on the phase transition is
less pronounced in experiments, [34], compared to the model. Certainly this
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difference between experiments and model might be induced by our assump-
tion of fast charge transport within the electrolyte. If the charge transport is
limited by finite ion mobilities in the electrolyte, the phase transition would
be more affected by the distance of the LFP electrode to the anode than by
the size distribution of the LFP particles at least in thick electrodes.

Comparison with experimental data reveals that our many-particle model
is capable to describe the voltage-capacity characteristic of real LFP batteries
for different charging rates. Particularly the open-circuit potentials of the cell
is predicted by the model.

Common battery models assume an electro-neutral electrolyte, which is not
presumed in our many-particle model. Due to the assumption of fast charge
transport within the electrolyte the electrochemical potentials are spatially
constant. If the geometry of the electrode were known we could use the Pois-
son equation and the constant electrochemical potentials to determine both
the electric potential and the charge distribution within the electrolyte. In
particular, by means of suitable electrolyte models [16,17] the dimension of
the electric double layer within the pore space of the LFP electrode could
be studied. Then one could test if the assumption of electro-neutrality of the
electrolyte in the pore space is appropriate.

The stochastic many-particle model of this study is derived in Section 6
from a more general and even more complex thermodynamic model for many-
particle electrodes. About 23 assumptions on electrochemical processes where
necessary to derive the simple stochastic many-particle model for the LFP
electrode of Section 3. Already the comparison of simulation and experimental
data suggest that processes like diffusion within the electrolyte cannot be
ignored for high charging rates. However, the derivation in Section 6 gives us
a systematic approach to extend the many-particle model in a consistent way
to incorporate more phenomena like diffusion or heat transport.

The stochastic model of this paper is not restricted to a LFP electrode
against a metallic lithium anode. For example, it is possible to replace the
lithium anode with a graphite anode, LixC6, or lithium titanium oxide anode,
Li4Ti5O12 that is likewise to be represented by a many-particle model. In this
setting simulations of commercial cells with the many-particle model become
possible.
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List of symbols many particle model

U [V] - reference potential
kLi [kg/m2s] - lithium intercalation rate
jP [A/m2] - exchange current

ν0 [m
3
2 ] - stochastic strength

L [J] - heat of solution
Ai [m2] - particle surface area
AiE [m2] - active surface area
V i [m3] - particle volume
VP [m3] - total volume
AE [m2] - total active area

yi, Y i - lithium mole fraction
τ i [s] - relaxation time
νi - stochastic strength

List of symbols

kB [J/K] - Boltzmann constant
e0 [C] - elementary charge
ε0 [C/(V m)] - electric constant
zα - charge number
mα [kg] - molecular mass

γiα, γis,α - stoichiometric coef. bulk and surface reactions
ν - normal vector

kM [1/m] - mean curvature
T ,Ts [K] - bulk and surface temperature
nα [m−3] - bulk number density

ns,α [m−2] - surface number density
ρα [kg/m3] - bulk mass density

ρs,α [kg/m2] - surface number density
v, vs [m/s] - bulk and surface barycentric velocity
w [m/s] - surface velocity
E [V/m] - electric field

ϕ, ϕs [V] - bulk and surface electrostatic potential
nF [C/m3] - charge density
nF
s [C/m2] - surface charge density
ρψ [J/m3] - free energy density

ρsψs [J/m2] - surface free energy density
µα, µs,α [J/kg] - bulk and surface chemical potential

σ [N/m2] - Cauchy stress tensor
Σ [N/m2] - total stress tensor
p [N/m2] - material pressure
γs [N/m] - surface tension
Jα [kg/sm2] - mass flux density
Js,α [kg/sm2] - surface mass flux density
jα [kg/sm2] - total mass flux density

Js,α [kg/sm] - surface mass flux density
js,α [kg/sm] - total surface mass flux density
Ri [1/sm3] - bulk reaction rate density
Ris [1/sm2] - surface reaction rate density
ri [kg/sm3] - bulk mass production density
ris [kg/sm2] - surface mass production density
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