86 research outputs found

    Lane reduction in driven 2d-colloidal systems through microchannels

    Full text link
    The transport behavior of a system of gravitationally driven colloidal particles is investigated. The particle interactions are determined by the superparamagnetic behavior of the particles. They can thus be arranged in a crystalline order by application of an external magnetic field. Therefore the motion of the particles through a narrow channel occurs in well-defined lanes. The arrangement of the particles is perturbed by diffusion and the motion induced by gravity. Due to these combined influences a density gradient forms along the direction of motion of the particles. A reconfiguration of the crystal is observed leading to a reduction of the number of lanes. In the course of the lane reduction transition a local melting of the quasi-crystalline phase to a disordered phase and a subsequent crystallization along the motion of the particles is observed. This transition is characterized experimentally and using Brownian dynamics (BD) simulations.Comment: 4 pages, 4 figure

    Stringency and Distribution in the EU Emissions Trading Scheme –The 2005 Evidence

    Get PDF
    With the release of the verified emissions for installations covered by the EU Emissions Trading Scheme for the first trading year 2005 we are able to compare actual emissions and allowances for each installation. Based on data available for 24 Member States as of January 2007, this paper uses a thorough data analysis for about 9,900 installations to investigate evidence on three issues: first, the stringency of the total allocation cap and allocation differences both among the Member States and a selection of emission intensive sectors; second, the distribution of the size of installations; and third, the spread of allocation discrepancies and possible allocation biases regarding the size of installations.Emission Trading, EU Emissions Trading Scheme, Climate Policy

    Graph Compression for Adjacency-Matrix Multiplication

    Get PDF
    19 April 2022 A Correction to this paper has been published: https://doi.org/10.1007/s42979-022-01141-w[Abstract] Computing the product of the (binary) adjacency matrix of a large graph with a real-valued vector is an important operation that lies at the heart of various graph analysis tasks, such as computing PageRank. In this paper, we show that some well-known webgraph and social graph compression formats are computation-friendly, in the sense that they allow boosting the computation. We focus on the compressed representations of (a) Boldi and Vigna and (b) Hernández and Navarro, and show that the product computation can be conducted in time proportional to the compressed graph size. Our experimental results show speedups of at least 2 on graphs that were compressed at least 5 times with respect to the original.We thank Cecilia Hernández for providing us with her software extracting the bicliques, and a helpful description in how to run it. This research has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie [grant agreement No 690941], namely while the first author was visiting the University of Chile, and while the second author was affiliated with the University of Helsinki and visiting the University of A Coruña. The first author was funded by Fundação para a Ciência e a Tecnologia (FCT) [grant number UIDB/50021/2020 and PTDC/CCI-BIO/29676/2017]; the second author was funded by the Academy of Finland [Grant number 268324], Fondecyt [Grant number 1171058] and NSERC [Grant number RGPIN-07185-2020]; the third author was funded by JSPS KAKENHI [grant numbers JP21K17701 and JP21H05847]; the fourth author was funded by AEI and Ministerio de Ciencia e Innovación (PGE and FEDER) [grant number PID2019-105221RB-C41] and Xunta de Galicia (co-funded with FEDER) [Grant numbers ED431C 2021/53 and ED431G 2019/01]; and the fifth author was funded by ANID – Millennium Science Initiative Program – Code ICN17_002Xunta de Galicia; ED431C 2021/53Xunta de Galicia; ED431G 2019/0

    Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    Full text link
    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus-they exhibit phase locking-and thus provide temporal information about the tone's frequency. In an accompanying psychoacoustic study, and in agreement with previous experiments, we show that humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans.Comment: 16 pages, 5 figures, and supplementary informatio

    Frequency-Invariant Representation of Interaural Time Differences in Mammals

    Get PDF
    Interaural time differences (ITDs) are the major cue for localizing low-frequency sounds. The activity of neuronal populations in the brainstem encodes ITDs with an exquisite temporal acuity of about . The response of single neurons, however, also changes with other stimulus properties like the spectral composition of sound. The influence of stimulus frequency is very different across neurons and thus it is unclear how ITDs are encoded independently of stimulus frequency by populations of neurons. Here we fitted a statistical model to single-cell rate responses of the dorsal nucleus of the lateral lemniscus. The model was used to evaluate the impact of single-cell response characteristics on the frequency-invariant mutual information between rate response and ITD. We found a rough correspondence between the measured cell characteristics and those predicted by computing mutual information. Furthermore, we studied two readout mechanisms, a linear classifier and a two-channel rate difference decoder. The latter turned out to be better suited to decode the population patterns obtained from the fitted model

    An unusual case of a microscopic alveolar adenoma coexisting with lung carcinoma: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Alveolar adenomas are extremely rare, benign, primary lung tumors of unknown histogenesis that are characterized by proliferative type II alveolar epithelium and septal mesenchyma. Mostly incidental, they are clinically important as they can imitate benign primary and secondary malignant tumors and at times are difficult to differentiate from early-stage lung cancer. We describe the case of a 59-year-old man with an incidental microscopic alveolar adenoma coexisting with poorly differentiated lung carcinoma.</p> <p>Case presentation</p> <p>A 59-year-old Caucasian man with a medical history of smoking and chronic obstructive pulmonary disease was incidentally found to have a right upper lobe mass while undergoing a computed tomographic chest scan as part of a chronic obstructive pulmonary disease clinical trial. Our patient underwent a right upper lobectomy after a bronchoscopic biopsy of the mass revealed the mass to be a carcinoma. A pathological examination revealed an incidental, small, 0.2 cm, well circumscribed lesion on the staple line margin of the lobectomy in addition to the carcinoma. Histopathological and immunohistochemical examinations revealed the lesion to be an alveolar adenoma.</p> <p>Conclusions</p> <p>We report the rare presentation of a microscopic alveolar adenoma coexisting with lung carcinoma. Alveolar adenoma is an entirely benign incidental neoplasm that can be precisely diagnosed using immunohistochemical analysis in addition to its unique histopathological characteristics.</p

    Hypthesis and theory

    Get PDF
    Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements

    Divisive Gain Modulation with Dynamic Stimuli in Integrate-and-Fire Neurons

    Get PDF
    The modulation of the sensitivity, or gain, of neural responses to input is an important component of neural computation. It has been shown that divisive gain modulation of neural responses can result from a stochastic shunting from balanced (mixed excitation and inhibition) background activity. This gain control scheme was developed and explored with static inputs, where the membrane and spike train statistics were stationary in time. However, input statistics, such as the firing rates of pre-synaptic neurons, are often dynamic, varying on timescales comparable to typical membrane time constants. Using a population density approach for integrate-and-fire neurons with dynamic and temporally rich inputs, we find that the same fluctuation-induced divisive gain modulation is operative for dynamic inputs driving nonequilibrium responses. Moreover, the degree of divisive scaling of the dynamic response is quantitatively the same as the steady-state responses—thus, gain modulation via balanced conductance fluctuations generalizes in a straight-forward way to a dynamic setting
    corecore