21 research outputs found

    Transfer of natural radionuclides from soil to the grass around uranium mine area Žirovski vrh, Slovenia

    No full text
    Uranium mine Žirovski vrh in Slovenia was closed in the year 1993. In the past years a lot of work was done for restoration of the area around the mine. There are two tailing sites, Jazbec and Boršt, filled with material with high specific activity of 226Ra. Tailings are covered by different layers of clay and soil in depth of 2 m for reducing radon exhalation rate. Gras, growing on the surface of tailing sites has been used as fodder for domestic animals. We were interesting about the amount of the specific activity of natural radionuclides 238U, 226Ra or 210Pb, transferred from the covering soil on the tailing to the grass on the surface area. The transfer factors of naturally occurring radionuclides have not been studied to the same extent as their artificial counterparts, but some comprehensive investigations have been done by various institutions around the world. In case of 226Ra calculated values are two times or four times bigger than measured. For 210Pb measured values are up to hundred times bigger than calculated. The reason for that is radon in the air, decays to the 210Pb, deposited on the grass and not 210Pb coming from the soil

    Radon levels after restoration of the U-mine disposal site

    No full text
    After cessation of the underground mining of uranium ore and production of uranium concentrate at Žirovski Vrh (Slovenia) in the period 1985–1990, two permanent surface disposal sites remained, namely, tailings pile and mine waste rock pile. Both disposal sites were of equal size of 4 hectares and were significant sources of radon. Their final restoration was designed in compliance with the condition of dose constraint for the public and authorized limits for radon exhalation from the remediated piles. In the late summer of 2008, a restoration of the mine waste pile was finished. Radon releases were reduced significantly by constructing an effective radon barrier of well compacted clayey material and a thick complex protective cover layer constructed over it. Radon exhalation rate from the mine waste area was lowered from primary level of 0.7 Bq/m2źs to natural levels (0.01 Bq/m2źs), and consequently, ambient radon levels also decreased on the site and nearby environment. The average radon contribution from the remaining U-mine sources was estimated on the basis of the environmental measurements of radon concentrations; they dropped from initial 7–9 Bq/m3 to approximately 3 Bq/m3. Further reduction of outdoor radon concentrations is expected after 2010, since the restoration of another disposal site will have been completed by the end of this year. Public exposure due to industrial radon after the first phase of restoration satisfactorily meets the dose constraint level of 0.3 mSv/y, since it decreased to less than 0.1 mSv/y

    Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Get PDF
    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less’ process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable

    Consensus Report of the Coalition for Clinical Research—Self-Monitoring of Blood Glucose

    No full text
    The Coalition for Clinical Research—Self-Monitoring of Blood Glucose Scientific Board, a group of nine academic clinicians and scientists from the United States and Europe, convened in San Francisco, California, on June 11–12, 2008, to discuss the appropriate uses of self-monitoring of blood glucose (SMBG) and the measures necessary to accurately assess the potential benefit of this practice in noninsulin-treated type 2 diabetes mellitus (T2DM). Thirteen consultants from the United States, Europe, and Canada from academia, practice, and government also participated and contributed based on their fields of expertise. These experts represent a range of disciplines that include adult endocrinology, pediatric endocrinology, health education, mathematics, statistics, psychology, nutrition, exercise physiology, and nursing. This coalition was organized by Diabetes Technology Management, Inc. Among the participants, there was consensus that: protocols assessing the performance of SMBG in noninsulin treated T2DM must provide the SMBG intervention subjects with blood glucose (BG) goals and instructions on how to respond to BG data in randomized controlled trials (RCTs);intervention subjects in clinical trials of SMBG-driven interventions must aggressively titrate their therapeutic responses or lifestyle changes in response to hyperglycemia;control subjects in clinical trials of SMBG must be isolated from SMBG-driven interventions and not be contaminated by physician experience with study subjects receiving a SMBG intervention;the best endpoints to measure in a clinical trial of SMBG in T2DM include delta Hemoglobin A1c levels, hyperglycemic events, hypoglycemic events, time to titrate noninsulin therapy to a maximum necessary dosage, and quality of life indices;either individual randomization or cluster randomization may be appropriate methods for separating control subjects from SMBG intervention subjects, provided that precautions are taken to avoid bias and that the sample size is adequate;treatment algorithms for assessing SMBG in T2DM may include a dietary, exercise, and/or medication intervention, which are all titratable according to the SMBG values;the medical literature contains very little information about the performance of SMBG in T2DM from RCTs in which treatment algorithms were used for dysglycemic values; andresearch on the performance of SMBG in T2DM based on sound scientific principles and clinical practices is needed at this time
    corecore