6,104 research outputs found

    Maximum size of reverse-free sets of permutations

    Full text link
    Two words have a reverse if they have the same pair of distinct letters on the same pair of positions, but in reversed order. A set of words no two of which have a reverse is said to be reverse-free. Let F(n,k) be the maximum size of a reverse-free set of words from [n]^k where no letter repeats within a word. We show the following lower and upper bounds in the case n >= k: F(n,k) \in n^k k^{-k/2 + O(k/log k)}. As a consequence of the lower bound, a set of n-permutations each two having a reverse has size at most n^{n/2 + O(n/log n)}.Comment: 10 page

    Substrate-induced antiferromagnetism of an Fe monolayer on the Ir(001) surface

    Full text link
    We present detailed ab initio study of structural and magnetic stability of a Fe-monolayer on the fcc(001) surface of iridium. The Fe-monolayer has a strong tendency to order antiferromagnetically for the true relaxed geometry. On the contrary an unrelaxed Fe/Ir(001) sample has a ferromagnetic ground state. The antiferromagnetism is thus stabilized by the decreased Fe-Ir layer spacing in striking contrast to the recently experimentally observed antiferromagnetism of the Fe/W(001) system which exists also for an ideal bulk-truncated, unrelaxed geometry. The calculated layer relaxations for Fe/Ir(001) agree reasonably well with recent experimental LEED data. The present study centers around the evaluation of pair exchange interactions between Fe-atoms in the Fe-overlayer as a function of the Fe/Ir interlayer distance which allows for a detailed understanding of the antiferromagnetism of a Fe/Ir(001) overlayer. Furthermore, our calculations indicate that the nature of the true ground state could be more complex and display a spin spiral-like rather than a c(2x2)-antiferromagnetic order. Finally, the magnetic stability of the Fe monolayer on the Ir(001) surface is compared to the closely related Fe/Rh(001) system.Comment: 8 pages, 4 figure

    Ventral and dorsal streams in the evolution of speech and language

    Get PDF
    The brains of humans and old-world monkeys show a great deal of anatomical similarity. The auditory cortical system, for instance, is organized into a ventral and a dorsal pathway in both species. A fundamental question with regard to the evolution of speech and language (as well as music) is whether human and monkey brains show principal differences in their organization (e.g., new pathways appearing as a result of a single mutation), or whether species differences are of a more subtle, quantitative nature. There is little doubt about a similar role of the ventral auditory pathway in both humans and monkeys in the decoding of spectrally complex sounds, which some authors have referred to as auditory object recognition. This includes the decoding of speech sounds (“speech perception”) and their ultimate linking to meaning in humans. The originally presumed role of the auditory dorsal pathway in spatial processing, by analogy to the visual dorsal pathway, has recently been conceptualized into a more general role in sensorimotor integration and control. Specifically for speech, the dorsal processing stream plays a role in speech production as well as categorization of phonemes during on-line processing of speech

    Regulation of Peripheral Molecular Clocks in Mammalian Tissues and In Vitro Skeletal Muscle Activation of AMP-Activated Protein Kinase via AICAR

    Full text link
    Most organisms possess a common molecular machinery that governs cellular and tissue circadian rhythmicity through a roughly 24-hour transcription-translation feedback loop. It is estimated that up to 15 percent of human genes are influenced by the core clock machinery. It is likely, however, that the metabolic networks affected by the molecular clock differ according to body tissue. Recent evidence suggests that peripheral molecular clocks are governed to a greater extent by energy availability than by light and dark cycles. AMP-activated protein kinase (AMPK) acts as a cellular fuel gauge within the cell and is activated in response to exercise and fasting. AMPK can also be pharmacologically activated by 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). AMPK likely serves as an intermediary between metabolism and the molecular clock due to its activation of the rate-limiting enzyme in Nicotinamide adenine dinucleotide (NAD) biosynthesis, Nicotinamide phosphoribosyltransferase (NAMPT), and its role in PER and CRY degradation. The NAD-dependent histone deacetylase SIRT 1 inhibits the BMAL1-CLOCK complex in a NAMPT-dependent manner.The complex interplay between metabolism and peripheral clocks mediated by AMPK is beginning to be unraveled. AMPK’s tissue-specific influence on the molecular clock in skeletal muscles and other mammalian tissues requires further elucidation as it may provide insight into the etiology and treatment of metabolic disease. [excerpt

    The dynamics of coset dimensional reduction

    Get PDF
    The evolution of multiple scalar fields in cosmology has been much studied, particularly when the potential is formed from a series of exponentials. For a certain subclass of such systems it is possible to get `assisted` behaviour, where the presence of multiple terms in the potential effectively makes it shallower than the individual terms indicate. It is also known that when compactifying on coset spaces one can achieve a consistent truncation to an effective theory which contains many exponential terms, however, if there are too many exponentials then exact scaling solutions do not exist. In this paper we study the potentials arising from such compactifications of eleven dimensional supergravity and analyse the regions of parameter space which could lead to scaling behaviour.Comment: 27 pages, 4 figures; added citation

    Impaired Intracellular Transport and Cell Surface Expression of Nonpolymorphic HLA-E

    Get PDF
    The assembly of the classical, polymorphic major histocompatibility complex class I molecules in the endoplasmic reticulum requires the presence of peptide ligands and ~2-microglobulin (~2m). Formation of this trimolecular complex is a prerequisite for e~cient transport to the cell surface, where presented peptides are scanned by T lymphocytes. The function of the other class I molecules is in dispute. The human, nonclassical class I gene, HLA-E, was found to be ubiquitously transcribed, whereas cell surface expression was dif~cult to detect upon transfection. Pulse chase experiments revealed that the HLA-E heavy chain in transfectants, obtained with the murine myeloma cell line P3X63-Ag8.653 (X63), displays a significant reduction in oligosaccharide maturation and intracellular transport compared with HLA-B27 in corresponding transfectants. The accordingly low HLA-E cell surface expression could be significantly enhanced by either reducing the culture temperature or by supplementing the medium with human ~2m, suggesting inefficient binding of endogenous peptides to HLA-E. To analyze whether HLA-E binds peptides and to identify the corresponding ligands, fractions of acid-extracted material from HLA-E/X63 transfectants were separated by reverse phase HPLC and were tested for their ability to enhance HLA-E cell surface expression. Two fractions specifically increased the HLA class I expression on the HLA-E transfectant clone

    Cosmology with Twisted Tori

    Get PDF
    We consider the cosmological role of the scalar fields generated by the compactification of 11-dimensional Einstein gravity on a 7D elliptic twisted torus, which has the attractive features of giving rise to a positive semi-definite potential, and partially fixing the moduli. This compactification is therefore relevant for low energy M-theory, 11D supergravity. We find that slow-roll inflation with the moduli is not possible, but that there is a novel scaling solution in Friedmann cosmologies in which the massive moduli oscillate but maintain a constant energy density relative to the background barotropic fluid

    Leadership in Social Movements in Asia

    Get PDF
    The author proposes a reflexion about the main requirements that Social Movements Leaders should meet. It also argues that leaders are not sufficient, social movements also need leadership in the sense of that what "builds and sustains the capacity of a group so that its members mutually support each other instead of letting themselves being fragmented with complex interpersonal differences" (p. 335)
    corecore