1,089 research outputs found

    Ultra-short of pico and femtosecond soliton laser pulse using microring resonator for cancer cells treatment

    Get PDF
    A system of microring resonators (MRRs) incorporating with an add/drop filter system is presented in which ultra-short single and multi temporal and spatial optical soliton pulses can be simulated and used to thermalbased killing of abnormal cells, tumor and cancer, applicable in nanomedical treatments. This proposed system uses chaotic signals generated by a bright soliton pulse within a nonlinear MRRs system. Interaction between gold nanoparticles and ultra-short femtosecond and picosecond laser pulses holds great interest in laser nanomedicine. By using the appropriate soliton input power and MRRs parameters, required spatial and temporal signals are generated spreading over the spectrum. Results obtained show that smallest single temporal and spatial soliton pulse with FWHM = 712 fs and FWHM = 17.5 pm could be generated respectively. The add/drop filter system is used to generate high capacity ultra-short soliton pulses in the range of nanometer/second and picometer/second

    Using Machine Learning for Handover Optimization in Vehicular Fog Computing

    Full text link
    Smart mobility management would be an important prerequisite for future fog computing systems. In this research, we propose a learning-based handover optimization for the Internet of Vehicles that would assist the smooth transition of device connections and offloaded tasks between fog nodes. To accomplish this, we make use of machine learning algorithms to learn from vehicle interactions with fog nodes. Our approach uses a three-layer feed-forward neural network to predict the correct fog node at a given location and time with 99.2 % accuracy on a test set. We also implement a dual stacked recurrent neural network (RNN) with long short-term memory (LSTM) cells capable of learning the latency, or cost, associated with these service requests. We create a simulation in JAMScript using a dataset of real-world vehicle movements to create a dataset to train these networks. We further propose the use of this predictive system in a smarter request routing mechanism to minimize the service interruption during handovers between fog nodes and to anticipate areas of low coverage through a series of experiments and test the models' performance on a test set

    Nd:YAG laser welding of stainless steel 304 for photonics device packaging

    Get PDF
    Although pulsed Nd:YAG laser welding has been widely used in microelectronics and photonics packaging industry, a full understanding of various phenomena involved is still a matter of trials and speculations. In this research, an ultra compact pulsed Nd:YAG laser with wavelength of 1.064 µm has been used to produce a spot weld on stainless steel 304. The principal objective of this research is to examine the effects of laser welding parameters such as laser beam peak powers, pulse durations, incident angles, focus point positions and number of shots on the weld dimensions: penetration depth and bead width. The ratio of the penetration depth to the bead width is considered as one of the most critical parameters to determine the weld quality. It is found that the penetration depth and bead width increase when the laser beam peak power, pulse duration and number of shot increase. In contrast, the penetration depth decreases when the laser beam defocus position and incident angle increase. This is due to the reduction of the laser beam intensity causing by the widening of the laser spot size. These experimental results provide a reference on an optimal laser welding operations for a reliable photonics device packaging. The results obtained shows that stainless steel 304 is suitable to be used as a base material for photonics device packaging employing Nd:YAG laser welding technique

    Konflik Lahan di Desa Senama Nenek Kecamatan Tapung Hulu Kabupaten Kampar (Kasus Konflik Tenurial)

    Full text link
    This research is motivated by ulayat land or customary land belonging to villagers of Senama Nenek village controlled by PTP.N V to become oil palm plantation. The problems that arise from this research are what factors are behind the occurrence of village land conflicts Senama grandmother and how to solve the land conflict. Informant research as much as 6 (six) people that is R as informant 1 as well as key informant or key informant, ARC, SM.N, FR, M and F. This research was conducted in Senama Nenek village Tapung Hulu sub district of Kampar regency, the reason the writer choose Senama Nenek village because in Senama Nenek village there is a conflict of struggle for ulayat land and until now there has been no settlement. Data analysis technique used by using triangulation technique that is writer analyze data starting from field observation, looking for initial data, process data and make conclusion. Based on the above approach, found there are factors behind the occurrence of land conflicts that is, differences in cultural background, differences of individual or group interests, changes in value in society, efforts to solve land conflicts in Senama Nenek village with the results of research that is the negotiation between the villagers of Senama Nenek and PTP.NV which resulted in the decision that PTP.NV should find a replacement land of 2,800 Ha, mediating by holding meetings between the Senama Nenek Community and the Company mediated by the DPD, Ombudsman, Komnas HAM and the Government Area. Conciliation is by accelerating the realization of the agreement, and Arbitration is by involving a third party to resolve land conflicts in Senama Nenek village

    Embedded nanomicro syringe on chip for molecular therapy

    Get PDF
    Muhammad Arif Jalil1, Nathaporn Suwanpayak2,3, Kathawut Kulsirirat3, Saisudawan Suttirak3, Jalil Ali4, Preecha P Yupapin31Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 2King Mongkut's Institute of Technology Ladkrabang, Chumphon Campus, Chumphon, Thailand; 3Nanoscale Science and Engineering Research Alliance, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand; 4Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, MalaysiaBackground: A novel nanomicro syringe system was proposed for drug storage and delivery using a PANDA ring resonator and atomic buffer. A PANDA ring is a modified optical add/drop filter, named after the well known Chinese bear. In principle, the molecule/drug is trapped by the force generated by different combinations of gradient fields and scattering photons within the PANDA ring. A nanomicro needle system can be formed by optical vortices in the liquid core waveguide which can be embedded on a chip, and can be used for long-term treatment. By using intense optical vortices, the required genes/molecules can be trapped and transported dynamically to the intended destinations via the nanomicro syringe, which is available for drug delivery to target tissues, in particular tumors. The advantage of the proposed system is that by confining the treatment area, the effect can be decreased. The use of different optical vortices for therapeutic efficiency is also discussed.Keywords: nanomicro syringe, nanomicro needle, molecular therapy, therapeutic efficiency, cance

    Textile Diamond Dipole and Artificial Magnetic Conductor Performance under Bending, Wetness and Specific Absorption Rate Measurements

    Get PDF
    Textile diamond dipole and Artificial Magnetic Conductor (AMC) have been proposed and tested under wearable and body centric measurements. The proposed antenna and AMC sheet are entirely made of textiles for both the substrate and conducting parts, thus making it suitable for wearable communications. Directive radiation patterns with high gain are obtained with the proposed AMC sheet, hence minimizing the radiation towards the human body. In this study, wearable and body centric measurements are investigated which include bending, wetness and Specific Absorption Rate (SAR). Bending is found not to give significant effect to the antenna and AMC performance, as opposed to wetness that yields severe performance distortion. However, the original performance is retrieved once the antenna and AMC dried. Moreover, notable SAR reduction is achieved with the introduction of the AMC sheet, which is appropriate to reduce the radiation that penetrates into human flesh

    Mapping Monte Carlo to Langevin dynamics: A Fokker-Planck approach

    Full text link
    We propose a general method of using the Fokker-Planck equation (FPE) to link the Monte-Carlo (MC) and the Langevin micromagnetic schemes. We derive the drift and disusion FPE terms corresponding to the MC method and show that it is analytically equivalent to the stochastic Landau-Lifshitz-Gilbert (LLG) equation of Langevin-based micromagnetics. Subsequent results such as the time quantification factor for the Metropolis MC method can be rigorously derived from this mapping equivalence. The validity of the mapping is shown by the close numerical convergence between the MC method and the LLG equation for the case of a single magnetic particle as well as interacting arrays of particles. We also found that our Metropolis MC is accurate for a large range of damping factors α\alpha, unlike previous time-quantified MC methods which break down at low α\alpha, where precessional motion dominates.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let
    corecore