87 research outputs found

    A Bayesian assessment of an approximate model for unconfined water flow in sloping layered porous media

    Get PDF
    The prediction of water table height in unconfined layered porous media is a difficult modelling problem that typically requires numerical simulation. This paper proposes an analytical model to approximate the exact solution based on a steady-state Dupuit–Forchheimer analysis. The key contribution in relation to a similar model in the literature relies in the ability of the proposed model to consider more than two layers with different thicknesses and slopes, so that the existing model becomes a special case of the proposed model herein. In addition, a model assessment methodology based on the Bayesian inverse problem is proposed to efficiently identify the values of the physical parameters for which the proposed model is accurate when compared against a reference model given by MODFLOW-NWT, the open-source finite-difference code by the U.S. Geological Survey. Based on numerical results for a representative case study, the ratio of vertical recharge rate to hydraulic conductivity emerges as a key parameter in terms of model accuracy so that, when appropriately bounded, both the proposed model and MODFLOW-NWT provide almost identical results

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    The ontogeny of antipredator behavior: age differences in California ground squirrels (Otospermophilus beecheyi) at multiple stages of rattlesnake encounters

    Full text link
    Newborn offspring of animals often exhibit fully functional innate antipredator behaviors, but they may also require learning or further development to acquire appropriate responses. Experience allows offspring to modify responses to specific threats and also leaves them vulnerable during the learning period. However, antipredator behaviors used at one stage of a predator encounter may compensate for deficiencies at another stage, a phenomenon that may reduce the overall risk of young that are vulnerable at one or more stages. Few studies have examined age differences in the effectiveness of antipredator behaviors across multiple stages of a predator encounter. In this study, we examined age differences in the antipredator behaviors of California ground squirrels (Otospermophilus beecheyi) during the detection, interaction, and attack stages of Pacific rattlesnake (Crotalus oreganus) encounters. Using free-ranging squirrels, we examined the ability to detect free-ranging rattlesnakes, snake-directed behaviors after discovery of a snake, and responses to simulated rattlesnake strikes. We found that age was the most important factor in snake detection, with adults being more likely to detect snakes than pups. We also found that adults performed more tail flagging (a predator-deterrent signal) toward snakes and were more likely to investigate a snake’s refuge when interacting with a hidden snake. In field experiments simulating snake strikes, adults exhibited faster reaction times than pups. Our results show that snake detection improves with age and that pups probably avoid rattlesnakes and minimize time spent in close proximity to them to compensate for their reduced reaction times to strikes

    Local Test Validation and Use of Results

    No full text

    A mountain-scale model for charactering unsaturated flow and transport in fractured tuff of Yucca Mountain

    Get PDF
    This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed
    • 

    corecore