53,902 research outputs found
Controllable Persistent Atom Current of Bose-Einstein Condensates in an Optical Lattice Ring
In this paper the macroscopic quantum states of Bose-Einstein condensates in
optical lattices is studied by solving the periodic Gross-Pitaevskii equation
in one-dimensional geometry. It is shown that an exact solution seen to be a
travelling wave of excited macroscopic quantum states resultes in a persistent
atom current which can be controlled by adjusting of the barrier height of the
optical periodic potential. A critical condition to generate the travelling
wave is demonstrated and we moreover propose a practical experiment to realize
the persistent atom current in a toroidal atom waveguide.Comment: 9 pages, 1 figure
Building multi-layer social knowledge maps with google maps API
Google Maps is an intuitive online-map service which changes people's way of navigation on Geo-maps. People can explore the maps in a multi-layer fashion in order to avoid information overloading. This paper reports an innovative approach to extend the "power" of Google Maps to adaptive learning. We have designed and implemented a navigator for multi-layer social knowledge maps, namely ProgressiveZoom, with Google Maps API. In our demonstration, the knowledge maps are built from the Interactive System Design (ISD) course at the School of Information Science, University of Pittsburgh. Students can read the textbooks and reflect their individual and social learning progress in a context of pedagogical hierarchical structure
Antimagnetic Rotation Band in Nuclei: A Microscopic Description
Covariant density functional theory and the tilted axis cranking method are
used to investigate antimagnetic rotation (AMR) in nuclei for the first time in
a fully self-consistent and microscopic way. The experimental spectrum as well
as the B(E2) values of the recently observed AMR band in 105Cd are reproduced
very well. This gives a further strong hint that AMR is realized in specific
bands in nuclei.Comment: 10 pages, 4 figure
Robust synchronization for 2-D discrete-time coupled dynamical networks
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 IEEEIn this paper, a new synchronization problem is addressed for an array of 2-D coupled dynamical networks. The class of systems under investigation is described by the 2-D nonlinear state space model which is oriented from the well-known Fornasini–Marchesini second model. For such a new 2-D complex network model, both the network dynamics and the couplings evolve in two independent directions. A new synchronization concept is put forward to account for the phenomenon that the propagations of all 2-D dynamical networks are synchronized in two directions with influence from the coupling strength. The purpose of the problem addressed is to first derive sufficient conditions ensuring the global synchronization and then extend the obtained results to more general cases where the system matrices contain either the norm-bounded or the polytopic parameter uncertainties. An energy-like quadratic function is developed, together with the intensive use of the Kronecker product, to establish the easy-to-verify conditions under which the addressed 2-D complex network model achieves global synchronization. Finally, a numerical example is given to illustrate the theoretical results and the effectiveness of the proposed synchronization scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008 and 61174136, the International Science and Technology Cooperation Project of China under
Grant No. 2009DFA32050, the Natural Science Foundation of Jiangsu Province of China under Grant BK2011598, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
Quantum Technology: The Second Quantum Revolution
We are currently in the midst of a second quantum revolution. The first
quantum revolution gave us new rules that govern physical reality. The second
quantum revolution will take these rules and use them to develop new
technologies. In this review we discuss the principles upon which quantum
technology is based and the tools required to develop it. We discuss a number
of examples of research programs that could deliver quantum technologies in
coming decades including; quantum information technology, quantum
electromechanical systems, coherent quantum electronics, quantum optics and
coherent matter technology.Comment: 24 pages and 6 figure
Phase diagram of two-species Bose-Einstein condensates in an optical lattice
The exact macroscopic wave functions of two-species Bose-Einstein condensates
in an optical lattice beyond the tight-binding approximation are studied by
solving the coupled nonlinear Schrodinger equations. The phase diagram for
superfluid and insulator phases of the condensates is determined analytically
according to the macroscopic wave functions of the condensates, which are seen
to be traveling matter waves.Comment: 13 pages, 2 figure
Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks
Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs
Quantum Phase Transition in Finite-Size Lipkin-Meshkov-Glick Model
Lipkin model of arbitrary particle-number N is studied in terms of exact
differential-operator representation of spin-operators from which we obtain the
low-lying energy spectrum with the instanton method of quantum tunneling. Our
new observation is that the well known quantum phase transition can also occur
in the finite-N model only if N is an odd-number. We furthermore demonstrate a
new type of quantum phase transition characterized by level-crossing which is
induced by the geometric phase interference and is marvelously periodic with
respect to the coupling parameter. Finally the conventional quantum phase
transition is understood intuitively from the tunneling formulation in the
thermodynamic limit.Comment: 4 figure
- …