758 research outputs found

    Physical education as Olympic education

    Get PDF
    Introduction In a recent paper (Parry, 1998, p. 64), I argued that the justification of PE activities lies in their capacity to facilitate the development of certain human excellences of a valued kind. Of course, the problem now lies in specifying those ‘human excellences of a valued kind’, and (for anyone) this task leads us into the area of philosophical anthropology. I suggested that the way forward for Physical Education lies in the philosophical anthropology (and the ethical ideals) of Olympism, which provide a specification of a variety of human values and excellences which: •have been attractive to human groups over an impressive span of time and space •have contributed massively to our historically developed conceptions of ourselves •have helped to develop a range of artistic and cultural conceptions that have defined Western culture. •have produced a range of physical activities that have been found universally satisfying and challenging. Although physical activities are widely considered to be pleasurable, their likelihood of gaining wide acceptance lies rather in their intrinsic value, which transcends the simply hedonic or relative good. Their ability to furnish us with pleasurable experiences depends upon our prior recognition in them of opportunities for the development and expression of valued human excellences. They are widely considered to be such opportunities for the expression of valued human excellences because, even when as local instantiations, their object is to challenge our common human propensities and abilities. I claimed that Olympic ideals may be seen not merely as inert ‘ideals’, but living ideas which have the power to remake our notions of sport in education, seeing sport not as mere physical activity but as the cultural and developmental activity of an aspiring, achieving, well-balanced, educated and ethical individual. This paper seeks to make good that claim by trying to develop a case for Physical Education as Olympic Education. I begin by setting out various accounts and conceptions of the Olympic Idea; then I suggest a unifying and organising account of the philosophical anthropology of Olympism; and this is followed by the practical application of that account in two examples of current ethical issues. Finally, I seek to present an account of Physical Education as Olympic Education

    Costs of sea dikes – regressions and uncertainty estimates

    Get PDF
    Failure to consider the costs of adaptation strategies can be seen by decision makers as a barrier to implementing coastal protection measures. In order to validate adaptation strategies to sea-level rise in the form of coastal protection, a consistent and repeatable assessment of the costs is necessary. This paper significantly extends current knowledge on cost estimates by developing – and implementing using real coastal dike data – probabilistic functions of dike costs. Data from Canada and the Netherlands are analysed and related to published studies from the US, UK, and Vietnam in order to provide a reproducible estimate of typical sea dike costs and their uncertainty. We plot the costs divided by dike length as a function of height and test four different regression models. Our analysis shows that a linear function without intercept is sufficient to model the costs, i.e. fixed costs and higher-order contributions such as that due to the volume of core fill material are less significant. We also characterise the spread around the regression models which represents an uncertainty stemming from factors beyond dike length and height. Drawing an analogy with project cost overruns, we employ log-normal distributions and calculate that the range between 3x and x∕3 contains 95 % of the data, where x represents the corresponding regression value. We compare our estimates with previously published unit costs for other countries. We note that the unit costs depend not only on the country and land use (urban/non-urban) of the sites where the dikes are being constructed but also on characteristics included in the costs, e.g. property acquisition, utility relocation, and project management. This paper gives decision makers an order of magnitude on the protection costs, which can help to remove potential barriers to developing adaptation strategies. Although the focus of this research is sea dikes, our approach is applicable and transferable to other adaptation measures

    Temperature determination from the lattice gas model

    Get PDF
    Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: nch/Zn_{ch}/Z where nchn_{ch} is the charge multiplicity and ZZ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.Comment: 11 pages, 2 ps file

    Irreversibility and Polymer Adsorption

    Full text link
    Physisorption or chemisorption from dilute polymer solutions often entails irreversible polymer-surface bonding. We present a theory of the non-equilibrium layers which result. While the density profile and loop distribution are the same as for equilibrium layers, the final layer comprises a tightly bound inner part plus an outer part whose chains make only fN surface contacts where N is chain length. The contact fractions f follow a broad distribution, P(f) ~ f^{-4/5}, in rather close agreement with strong physisorption experiments [H. M. Schneider et al, Langmuir v.12, p.994 (1996)].Comment: 4 pages, submitted to Phys. Rev. Let

    Costs of sea dikes – regressions and uncertainty estimates

    Get PDF
    Failure to consider the costs of adaptation strategies can be seen by decision makers as a barrier to implementing coastal protection measures. In order to validate adaptation strategies to sea-level rise in the form of coastal protection, a consistent and repeatable assessment of the costs is necessary. This paper significantly extends current knowledge on cost estimates by developing – and implementing using real coastal dike data – probabilistic functions of dike costs. Data from Canada and the Netherlands are analysed and related to published studies from the US, UK, and Vietnam in order to provide a reproducible estimate of typical sea dike costs and their uncertainty. We plot the costs divided by dike length as a function of height and test four different regression models. Our analysis shows that a linear function without intercept is sufficient to model the costs, i.e. fixed costs and higher-order contributions such as that due to the volume of core fill material are less significant. We also characterise the spread around the regression models which represents an uncertainty stemming from factors beyond dike length and height. Drawing an analogy with project cost overruns, we employ log-normal distributions and calculate that the range between 3x and x∕3 contains 95 % of the data, where x represents the corresponding regression value. We compare our estimates with previously published unit costs for other countries. We note that the unit costs depend not only on the country and land use (urban/non-urban) of the sites where the dikes are being constructed but also on characteristics included in the costs, e.g. property acquisition, utility relocation, and project management. This paper gives decision makers an order of magnitude on the protection costs, which can help to remove potential barriers to developing adaptation strategies. Although the focus of this research is sea dikes, our approach is applicable and transferable to other adaptation measures

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include

    Effects of Compression and Collective Expansion on Particle Emission from Central Heavy-Ion Reactions

    Full text link
    Conditions under which compression occurs and collective expansion develops in energetic reactions of heavy nuclei, are analyzed, together with their effects on emitted light baryons and pions. Within transport simulations, it is shown that shock fronts perpendicular to beam axis form in head-on reactions. The fronts separate hot compressed matter from normal. As impact parameter increases, the angle of inclination of the fronts relative to beam axis decreases, and in-between the fronts a weak tangential discontinuity develops. Hot matter exposed to the vacuum in directions perpendicular to shock motion (and parallel to fronts), starts to expand sideways, early within reactions. Expansion in the direction of shock motion follows after the shocks propagate through nuclei, but due to the delay does not acquire same strength. Expansion affects angular distributions, mean-energy components, shapes of spectra and mean energies of different particles emitted into any one direction, and further particle yields. Both the expansion and a collective motion associated with the weak discontinuity, affect the magnitude of sideward flow within reaction plane. Differences in mean particle energy components in and out of the reaction plane in semicentral collisions, depend sensitively on the relative magnitude of shock speed in normal matter and speed of sound in hot matter.Comment: 71 pages, 33 figures (available on request), report MSUCL-94
    corecore