42,893 research outputs found
A study on LQG/LTR control for damping inter-area oscillations in power systems
Published versio
Floodplain environmental change during the younger dryas and holocene: Evidence from the lower kennet valley, south central England
Many lowland rivers across northwest Europe exhibit broadly similar behavioural responses to glacial-interglacial transitions and landscape development. Difficulties exist in assessing these, largely because the evidence from many rivers remains limited and fragmentary. Here we address this issue in the context of the river Kennet, a tributary of the Thames, since c. 13,000 cal. BP). Some similarities with other rivers are present, suggesting that regional climatic shifts are important controls. The Kennet differs from the regional pattern in a number of ways. The rate of response to sudden climatic change, particularly at the start of the Holocene and also mid-Holocene forest clearance, appears very high. This may reflect abrupt shifts between two catchment scale hydrological states arising from contemporary climates, land use change and geology. Stadial hydrology is dominated by nival regimes, with limited winter infiltration and high spring and summer runoff. Under an interglacial climate, infiltration is more significant. The probable absence of permafrost in the catchment means that a lag between the two states due to its gradual decay is unlikely. Palaeoecology, supported by radiocarbon dates, suggests that, at the very start of the Holocene, a dramatic episode of fine sediment deposition across most of the valley floor occurred, lasting 500-1000 years. A phase of peat accumulation followed as mineral sediment supply declined. A further shift led to tufa deposition, initially in small pools, then across the whole floodplain area, with the river flowing through channels cut in tufa and experiencing repeated avulsion. Major floods, leaving large gravel bars that still form positive relief features on the floodplain, followed mid-Holocene floodplain stability. Prehistoric deforestation is likely to be the cause of this flooding, inducing a major environmental shift with significantly increased surface runoff. Since the Bronze Age, predominantly fine sediments were deposited along the valley with apparently stable channels and vertical floodplain accretion associated with soil erosion and less catastrophic flooding. The Kennet demonstrates that, while a general pattern of river behaviour over time, within a region, may be identifiable, individual rivers are likely to diverge from this. Consequently, it is essential to understand catchment controls, particularly the relative significance of surface and subsurface hydrology
Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration
Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente
Stress-Induced Delamination Of Through Silicon Via Structures
Continuous scaling of on-chip wiring structures has brought significant challenges for materials and processes beyond the 32 nm technology node in microelectronics. Recently three-dimensional (3-D) integration with through-silicon-vias (TSVs) has emerged as an effective solution to meet the future interconnect requirement. Thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper examines the effect of thermal stresses on interfacial reliability of TSV structures. First, the three-dimensional distribution of the thermal stress near the TSV and the wafer surface is analyzed. Using a linear superposition method, a semi-analytic solution is developed for a simplified structure consisting of a single TSV embedded in a silicon (Si) wafer. The solution is verified for relatively thick wafers by comparing to numerical results obtained by finite element analysis (FEA). Results from the stress analysis suggest interfacial delamination as a potential failure mechanism for the TSV structure. Analytical solutions for various TSV designs are then obtained for the steady-state energy release rate as an upper bound for the interfacial fracture driving force, while the effect of crack length is evaluated numerically by FEA. Based on these results, the effects of TSV designs and via material properties on the interfacial reliability are elucidated. Finally, potential failure mechanisms for TSV pop-up due to interfacial fracture are discussed.Aerospace Engineerin
Vietnam s Familiair Strangers: Narratives of Home, Homeland and Belonging Among Second Generation Viet Kieu in Sai Gon
Salemink, O.J.H.M. [Promotor]Bal, E.W. [Copromotor
Thermomechanical Characterization And Modeling For TSV Structures
Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente
Reduced Phagocytic Capacity of Blood Monocyte/Macrophages in Tuberculosis Patients Is Further Reduced by Smoking.
Tuberculosis (TB) and tobacco use are two major alarming global health issues posing immense threats to human populations. Mycobacterium tuberculosis (MTB) by activation of macrophages could induce the sequences of cells activation and releases of inflammatory cytokines such as CXCL-8, Il-12 and TNF-α which in turn induces the immune system network. However no information is available on other activity of cells by MTB and smoking. In the current study we aimed to investigate the serum levels TNF-a, CXCL-8 and phagocytosis capacity in tuberculosis patients with and without smoking. 103 subjects entered the study including 61 new diagnosed pulmonary TB patients (23 smokers and 38 nonsmokers) and 42 control healthy subjects. The phagocytosis of fluorescein isothiocyanate dextran (FITC-dextran) in blood monocytes/macrophages through flowcytometry was assessed. Serum levels of TNF-a and CXCL-8 were analyzed by ELISA methods. A lower percentage of cells from TB patients who smoked [50.29% (43.4-57.2), p<0.01] took up FITC-dextran after 2h compared to non-smoking TB subjects [71.62% (69.2-74.1)] and healthy cases [97.45% (95.9-99.1). Phagocytic capacity was inversely correlated with cigarette smoking as measured by pack years (r=-0.73, p<0.001). The serum levels of TNF-a and CXCL-8 were significantly higher in the TB patients who smoked compared to the TB non-smoker group (p<0.001, p<0.01 respectively). Blood monocytes/macrophages from TB patients have reduced phagocytic capacity which is further reduced in TB patients who smoke. Smoking enhanced serum levels of TNF-a and CXCL-8 suggesting a greater imbalance between the proinflammatory and anti-inflammatory factors in these patients
An analysis of turbulent diffusion flame in axisymmetric jet
The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed
- …
