1,037 research outputs found

    Enhanced shot noise in resonant tunneling: theory and experiment

    Full text link
    We show that shot noise in a resonant tunneling diode biased in the negative differential resistance regions of the I-V characteristic is enhanced with respect to ``full'' shot noise. We provide experimental results showing a Fano factor up to 6.6, and show that it is a dramatic effect caused by electron-electron interaction through Coulomb force, enhanced by the particular shape of the density of states in the well. We also present numerical results from the proposed theory, which are in agreement with the experiment, demonstrating that the model accounts for the relevant physics involved in the phenomenon.Comment: 4 pages, 4 figure

    Simulation of hydrogenated graphene Field-Effect Transistors through a multiscale approach

    Full text link
    In this work, we present a performance analysis of Field Effect Transistors based on recently fabricated 100% hydrogenated graphene (the so-called graphane) and theoretically predicted semi-hydrogenated graphene (i.e. graphone). The approach is based on accurate calculations of the energy bands by means of GW approximation, subsequently fitted with a three-nearest neighbor (3NN) sp3 tight-binding Hamiltonian, and finally used to compute ballistic transport in transistors based on functionalized graphene. Due to the large energy gap, the proposed devices have many of the advantages provided by one-dimensional graphene nanoribbon FETs, such as large Ion and Ion/Ioff ratios, reduced band-to-band tunneling, without the corresponding disadvantages in terms of prohibitive lithography and patterning requirements for circuit integration

    Three Dimensional Visualization and Fractal Analysis of Mosaic Patches in Rat Chimeras: Cell Assortment in Liver, Adrenal Cortex and Cornea

    Get PDF
    The production of organ parenchyma in a rapid and reproducible manner is critical to normal development. In chimeras produced by the combination of genetically distinguishable tissues, mosaic patterns of cells derived from the combined genotypes can be visualized. These patterns comprise patches of contiguously similar genotypes and are different in different organs but similar in a given organ from individual to individual. Thus, the processes that produce the patterns are regulated and conserved. We have previously established that mosaic patches in multiple tissues are fractal, consistent with an iterative, recursive growth model with simple stereotypical division rules. Fractal dimensions of various tissues are consistent with algorithmic models in which changing a single variable (e.g. daughter cell placement after division) switches the mosaic pattern from islands to stripes of cells. Here we show that the spiral pattern previously observed in mouse cornea can also be visualized in rat chimeras. While it is generally held that the pattern is induced by stem cell division dynamics, there is an unexplained discrepancy in the speed of cellular migration and the emergence of the pattern. We demonstrate in chimeric rat corneas both island and striped patterns exist depending on the age of the animal. The patches that comprise the pattern are fractal, and the fractal dimension changes with the age of the animal and indicates the constraint in patch complexity as the spiral pattern emerges. The spiral patterns are consistent with a loxodrome. Such data are likely to be relevant to growth and cell division in organ systems and will help in understanding how organ parenchyma are generated and maintained from multipotent stem cell populations located in specific topographical locations within the organ. Ultimately, understanding algorithmic growth is likely to be essential in achieving organ regeneration in vivo or in vitro from stem cell populations

    Subsidizing Religious Participation through Groups: A Model of the “Megachurch” Strategy for Growth

    Get PDF
    Either despite or because of their non-traditional approach, megachurches have grown significantly in the United States since 1980. This paper models religious participation as an imperfect public good which, absent intervention, yields suboptimal participation by members from the church’s perspective. Megachurches address this problem in part by employing secular-based group activities to subsidize religious participation that then translates into an increase in the attendees’ religious investment. This strategy not only allows megachurches to attract and retain new members when many traditional churches are losing members but also results in higher levels of an individual’s religious capital. As a result, the megachurch may raise expectations of members’ levels of commitment and faith practices. Data from the FACT2000 survey provide evidence that megachurches employ groups more extensively than other churches, and this approach is consistent with a strategy to use groups to help subsidize individuals’ religious investment. Religious capital rises among members of megachurches relative to members of non-megachurches as a result of this strategy

    Electron dynamics in intentionally disordered semiconductor superlattices

    Get PDF
    We study the dynamical behavior of disordered quantum-well-based semiconductor superlattices where the disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident particle energy, for specific values of the incident energy this time increases linearly when correlated disorder is included. As expected, those values of the energy coincide with a narrow subband of extended states predicted by the static calculations of Dom\'{\i}nguez-Adame {\em et al.} [Phys. Rev. B {\bf 51}, 14 ,359 (1994)]; such states are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a dramatic filtering of the original signal, which makes us confident that devices based on this property may be designed and used for nanotechnological applications. This is more so in view of the possibility of controllingthe outp ut band using a dc electric field, which we also discuss. In the conclusion we summarize our results and present an outlook for future developments arising from this work.Comment: 10 pagex, RevTex, 13 Postscript figures. Physical Review B (in press

    Mechanical Systems: Symmetry and Reduction

    Get PDF
    Reduction theory is concerned with mechanical systems with symmetries. It constructs a lower dimensional reduced space in which associated conservation laws are taken out and symmetries are \factored out" and studies the relation between the dynamics of the given system with the dynamics on the reduced space. This subject is important in many areas, such as stability of relative equilibria, geometric phases and integrable systems

    Analysis of shot noise suppression in mesoscopic cavities in a magnetic field

    Full text link
    We present a numerical investigation of shot noise suppression in mesoscopic cavities and an intuitive semiclassical explanation of the behavior observed in the presence of an orthogonal magnetic field. In particular, we conclude that the decrease of shot noise for increasing magnetic field is the result of the interplay between the diameter of classical cyclotron orbits and the width of the apertures defining the cavity. Good agreement with published experimental results is obtained, without the need of introducing fitting parameters.Comment: 5 pages, 3 figures, contents changed (final version
    corecore