83 research outputs found

    On the Opening of Branes

    Get PDF
    We relate, in 10 and 11 dimensional supergravities, configurations of intersecting closed branes with vanishing binding energy to configurations where one of the branes opens and has its boundaries attached to the other. These boundaries are charged with respect to fields living on the closed brane. The latter hosts electric and magnetic charges stemming from dual pairs of open branes terminating on it. We show that charge conservation, gauge invariance and supersymmetry entirely determine these charges and these fields, which can be seen as Goldstone fields of broken supersymmetry. Open brane boundary charges can annihilate, restoring the zero binding energy configuration. This suggests emission of closed branes by branes, a generalization of closed string emission by D-branes. We comment on the relation of the Goldstone fields to matrix models approaches to M-theory.Comment: 13 pages, LaTeX, no figure

    Supersymmetry and Gravitational Duality

    Full text link
    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-NUT solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.Comment: 23 pages, no figures; v2: sign typos fixed in Section 6; v3: version to appear in PRD. Improved discussion in section 5 (on the surface NUT charges) and in section 6 (on the superalgebra

    Hidden Symmetries and Dirac Fermions

    Full text link
    In this paper, two things are done. First, we analyze the compatibility of Dirac fermions with the hidden duality symmetries which appear in the toroidal compactification of gravitational theories down to three spacetime dimensions. We show that the Pauli couplings to the p-forms can be adjusted, for all simple (split) groups, so that the fermions transform in a representation of the maximal compact subgroup of the duality group G in three dimensions. Second, we investigate how the Dirac fermions fit in the conjectured hidden overextended symmetry G++. We show compatibility with this symmetry up to the same level as in the pure bosonic case. We also investigate the BKL behaviour of the Einstein-Dirac-p-form systems and provide a group theoretical interpretation of the Belinskii-Khalatnikov result that the Dirac field removes chaos.Comment: 30 page

    G+++ Invariant Formulation of Gravity and M-Theories: Exact BPS Solutions

    Full text link
    We present a tentative formulation of theories of gravity with suitable matter content, including in particular pure gravity in D dimensions, the bosonic effective actions of M-theory and of the bosonic string, in terms of actions invariant under very-extended Kac-Moody algebras G+++. We conjecture that they host additional degrees of freedom not contained in the conventional theories. The actions are constructed in a recursive way from a level expansion for all very-extended algebras G+++. They constitute non-linear realisations on cosets, a priori unrelated to space-time, obtained from a modified Chevalley involution. Exact solutions are found for all G+++. They describe the algebraic properties of BPS extremal branes, Kaluza-Klein waves and Kaluza-Klein monopoles. They illustrate the generalisation to all G+++ invariant theories of the well-known duality properties of string theories by expressing duality as Weyl invariance in G+++. Space-time is expected to be generated dynamically. In the level decomposition of E8+++ = E11, one may indeed select an A10 representation of generators Pa which appears to engender space-time translations by inducing infinite towers of fields interpretable as field derivatives in space and time.Comment: Latex 45 pages, 1 figure. Discussion on pages 19 and 20 altered. Appendix B amplified. 4 footnotes added. 2 references added. Acknowledgments updated. Additional minor correction

    An M-theory solution from null roots in E11

    Full text link
    We find a purely gravitational classical solution of M-theory/eleven-dimensional supergravity which corresponds to a solution of the E10 brane sigma-model involving a null root. This solution is not supersymmetric and is regularly embedded into E11.Comment: 10 page

    Counting supersymmetric branes

    Get PDF
    Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with g_s^{-\sigma} for \sigma>2. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for \sigma<4 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.Comment: 1+33 pages. To the memory of Laurent Houart. v2: Published version with added reference

    An E9 multiplet of BPS states

    Full text link
    We construct an infinite E9 multiplet of BPS states for 11D supergravity. For each positive real root of E9 we obtain a BPS solution of 11D supergravity, or of its exotic counterparts, depending on two non-compact transverse space variables. All these solutions are related by U-dualities realised via E9 Weyl transformations in the regular embedding of E9 in E10, E10 in E11. In this way we recover the basic BPS solutions, namely the KK-wave, the M2 brane, the M5 brane and the KK6-monopole, as well as other solutions admitting eight longitudinal space dimensions. A novel technique of combining Weyl reflexions with compensating transformations allows the construction of many new BPS solutions, each of which can be mapped to a solution of a dual effective action of gravity coupled to a certain higher rank tensor field. For real roots of E10 which are not roots of E9, we obtain additional BPS solutions transcending 11D supergravity (as exemplified by the lowest level solution corresponding to the M9 brane). The relation between the dual formulation and the one in terms of the original 11D supergravity fields has significance beyond the realm of BPS solutions. We establish the link with the Geroch group of general relativity, and explain how the E9 duality transformations generalize the standard Hodge dualities to an infinite set of `non-closing dualities'.Comment: 76 pages, 6 figure

    A Remark on the Renormalization Group Equation for the Penner Model

    Full text link
    It is possible to extract values for critical couplings and gamma_string in matrix models by deriving a renormalization group equation for the variation of the of the free energy as the size N of the matrices in the theory is varied. In this paper we derive a ``renormalization group equation'' for the Penner model by direct differentiation of the partition function and show that it reproduces the correct values of the critical coupling and gamma_string and is consistent with the logarithmic corrections present for g=0,1.Comment: LaTeX, 5 pages, LPTHE-Orsay-94-5

    G2 Dualities in D=5 Supergravity and Black Strings

    Full text link
    Five dimensional minimal supergravity dimensionally reduced on two commuting Killing directions gives rise to a G2 coset model. The symmetry group of the coset model can be used to generate new solutions by applying group transformations on a seed solution. We show that on a general solution the generators belonging to the Cartan and nilpotent subalgebras of G2 act as scaling and gauge transformations, respectively. The remaining generators of G2 form a sl(2,R)+sl(2,R) subalgebra that can be used to generate non-trivial charges. We use these generators to generalize the five dimensional Kerr string in a number of ways. In particular, we construct the spinning electric and spinning magnetic black strings of five dimensional minimal supergravity. We analyze physical properties of these black strings and study their thermodynamics. We also explore their relation to black rings.Comment: typos corrected (26 pages + appendices, 2 figures
    corecore