552 research outputs found
The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon
The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules
that connect the Compton scattering amplitudes to the inclusive photoproduction
cross sections of the target under investigation. Being based on such universal
principles as causality, unitarity, and gauge invariance, these sum rules
provide a unique testing ground to study the internal degrees of freedom that
hold the system together. The present article reviews these sum rules for the
spin-dependent cross sections of the nucleon by presenting an overview of
recent experiments and theoretical approaches. The generalization from real to
virtual photons provides a microscope of variable resolution: At small
virtuality of the photon, the data sample information about the long range
phenomena, which are described by effective degrees of freedom (Goldstone
bosons and collective resonances), whereas the primary degrees of freedom
(quarks and gluons) become visible at the larger virtualities. Through a rich
body of new data and several theoretical developments, a unified picture of
virtual Compton scattering emerges, which ranges from coherent to incoherent
processes, and from the generalized spin polarizabilities on the low-energy
side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl
Interleukin-1 Receptor-Associated Kinase-3 Is a Key Inhibitor of Inflammation in Obesity and Metabolic Syndrome
BACKGROUND: Visceral obesity is associated with the rising incidence of type 2 diabetes and metabolic syndrome. Low-grade chronic inflammation and oxidative stress synergize in obesity and obesity-induced disorders. OBJECTIVE: We searched a cluster of molecules that support interactions between these stress conditions in monocytes. METHODS: RNA expressions in blood monocytes of two independent cohorts comprising 21 and 102 obese persons and 46 age-matched controls were determined by microarray and independently validated by quantitative RT-PCR analysis. The effect of three-month weight loss after bariatric surgery was determined. The effect of RNA silencing on inflammation and oxidative stress was studied in human monocytic THP-1 cells. RESULTS: Interleukin-1 receptor-associated kinase-3 (IRAK3), key inhibitor of IRAK/NFκB-mediated chronic inflammation, is downregulated in monocytes of obese persons. Low IRAK3 was associated with high superoxide dismutase-2 (SOD2), a marker of mitochondrial oxidative stress. A comparable expression profile was also detected in visceral adipose tissue of the same obese subjects. Low IRAK3 and high SOD2 was associated with a high prevalence of metabolic syndrome (odds ratio: 9.3; sensitivity: 91%; specificity: 77%). By comparison, the odds ratio of high-sensitivity C-reactive protein, a widely used marker of systemic inflammation, was 4.3 (sensitivity: 69%; specificity: 66%). Weight loss was associated with an increase in IRAK3 and a decrease in SOD2, in association with a lowering of systemic inflammation and a decreasing number of metabolic syndrome components. We identified the increase in reactive oxygen species in combination with obesity-associated low adiponectin and high glucose and interleukin-6 as cause of the decrease in IRAK3 in THP-1 cells in vitro. CONCLUSION: IRAK3 is a key inhibitor of inflammation in association with obesity and metabolic syndrome. Our data warrant further evaluation of IRAK3 as a diagnostic and prognostic marker, and as a target for intervention
PPAR Agonist-Induced Reduction of Mcp1 in Atherosclerotic Plaques of Obese, Insulin-Resistant Mice Depends on Adiponectin-Induced Irak3 Expression
Synthetic peroxisome proliferator-activated receptor (PPAR) agonists are used to treat dyslipidemia and insulin resistance. In this study, we examined molecular mechanisms that explain differential effects of a PPARα agonist (fenofibrate) and a PPARγ agonist (rosiglitazone) on macrophages during obesity-induced atherogenesis. Twelve-week-old mice with combined leptin and LDL-receptor deficiency (DKO) were treated with fenofibrate, rosiglitazone or placebo for 12 weeks. Only rosiglitazone improved adipocyte function, restored insulin sensitivity, and inhibited atherosclerosis by decreasing lipid-loaded macrophages. In addition, it increased interleukin-1 receptor-associated kinase-3 (Irak3) and decreased monocyte chemoattractant protein-1 (Mcp1) expressions, indicative of a switch from M1 to M2 macrophages. The differences between fenofibrate and rosiglitazone were independent of Pparγ expression. In bone marrow-derived macrophages (BMDM), we identified the rosiglitazone-associated increase in adiponectin as cause of the increase in Irak3. Interestingly, the deletion of Irak3 in BMDM (IRAK3(-/-) BMDM) resulted in activation of the canonical NFκB signaling pathway and increased Mcp1 protein secretion. Rosiglitazone could not decrease the elevated Mcp1 secretion in IRAK3(-/-) BMDM directly and fenofibrate even increased the secretion, possibly due to increased mitochondrial reactive oxygen species production. Furthermore, aortic extracts of high-fat insulin-resistant LDL-receptor deficient mice, with lower adiponectin and Irak3 and higher Mcp1, showed accelerated atherosclerosis. In aggregate, our results emphasize an interaction between PPAR agonist-mediated increase in adiponectin and macrophage-associated Irak3 in the protection against atherosclerosis by PPAR agonists
Decrease of miR-146b-5p in Monocytes during Obesity Is Associated with Loss of the Anti-Inflammatory but Not Insulin Signaling Action of Adiponectin
Background: Low adiponectin, a well-recognized antidiabetic adipokine, has been associated with obesity-related inflammation, oxidative stress and insulin resistance. Globular adiponectin is an important regulator of the interleukin-1 receptor-associated kinase (IRAK)/NFkB pathway in monocytes of obese subjects. It protects against inflammation and oxidative stress by inducing IRAK3. microRNA (miR)-146b-5p inhibits NFkB-mediated inflammation by targeted repression of IRAK1 and TNF receptor-associated factor-6 (TRAF6). Therefore, we measured the expression of miR-146b-5p in monocytes of obese subjects. Because it was low we determined the involvement of this miR in the anti-inflammatory, antioxidative and insulin signaling action of globular adiponectin. Methods: miR-146b-5p expression in monocytes of obese subjects was determined by qRT-PCR. The effect of miR-146b-5p silencing on molecular markers of inflammation, oxidative stress and insulin signaling and the association with globular adiponectin was assessed in human THP-1 monocytes. Results: miR-146b-5p was downregulated in monocytes of obese persons. Low globular adiponectin decreased miR-146b-5p and IRAK3 in THP-1 monocytes, associated with increased mitochondrial reactive oxygen species (ROS). Intracellular ROS and insulin receptor substrate-1 (IRS1) protein were unchanged. Silencing of miR-146b-5p with an antisense inhibitor resulted in increased expression of IRAK1 and TRAF6 leading to more NFkB p65 DNA binding activity and TNFa. As
Structural identification of oxidized acyl-phosphatidylcholines that induce platelet activation
Oxidation of low-density lipoprotein (LDL) generates proinflammatory and prothrombotic mediators that may play a crucial role in cardiovascular and inflammatory diseases. In order to study platelet-activating components of oxidized LDL 1-stearoyl-2-arachidonoyl-sn-glycero-3- phosphocholine, a representative of the major phospholipid species in LDL, the 1-acyl-phosphatidylcholines (PC), was oxidized by CuCl2 and H2O2. After separation by high-performance liquid chromatography, three compounds were detected which induced platelet shape change at low micromolar concentrations. Platelet activation by these compounds was distinct from the pathways stimulated by platelet-activating factor, lysophosphatidic acid, lyso-PC and thromboxane A(2), as evidenced by the use of specific receptor antagonists. Further analyses of the oxidized phospholipids by electrospray ionization mass spectrometry structurally identified them as 1-stearoyl-2-azelaoyl-sn-glycero-3-phosphocholine (m/z 694; SAzPC), 1-stearoyl-2-glutaroyl-snglycero-3- phosphocholine (m/z 638; SGPC), and 1-stearoyl-2-( 5-oxovaleroyl)-sn-glycero-3-phosphocholine (m/z 622; SOVPC). These observations demonstrate that novel 1-acyl-PC which had previously been found to stimulate interaction of monocytes with endothelial cells also induce platelet activation, a central step in acute thrombogenic and atherogenic processes. Copyright (C) 2005 S. Karger AG, Basel
Pioglitazone Improves Myocardial Blood Flow and Glucose Utilization in Nondiabetic Patients With Combined Hyperlipidemia A Randomized, Double-Blind, Placebo-Controlled Study
ObjectivesThis study’s aim was to examine whether treatment with pioglitazone, added to conventional lipid-lowering therapy, would improve myocardial glucose utilization (MGU) and blood flow (MBF) in nondiabetic patients with familial combined hyperlipidemia (FCHL).BackgroundThiazolidinediones were found to improve insulin sensitivity and MGU in type 2 diabetes and MBF in Mexican Americans with insulin resistance. Familial combined hyperlipidemia is a complex genetic disorder conferring a high risk of premature coronary artery disease, characterized by high serum cholesterol and/or triglyceride, low high-density lipoprotein (HDL) cholesterol, and insulin resistance.MethodsWe undertook a randomized, double-blind, placebo-controlled study in 26 patients with FCHL, treated with pioglitazone or matching placebo 30 mg daily for 4 weeks, followed by 45 mg daily for 12 weeks. Positron emission tomography was used to measure MBF at rest and during adenosine-induced hyperemia and MGU during euglycemic hyperinsulinemic clamp at baseline and after treatment.ResultsWhereas no change was observed in the placebo group after treatment, patients receiving pioglitazone showed a significant increase in whole body glucose disposal (3.93 ± 1.59 mg/kg/min to 5.24 ± 1.65 mg/kg/min; p = 0.004) and MGU (0.62 ± 0.26 μmol/g/min to 0.81 ± 0.14 μmol/g/min; p = 0.0007), accompanied by a significant improvement in resting MBF (1.11 ± 0.20 ml/min/g to 1.25 ± 0.21 ml/min/g; p = 0.008). Furthermore, in the pioglitazone group HDL cholesterol (+28%; p = 0.003) and adiponectin (+156.2%; p = 0.0001) were increased and plasma insulin (−35%; p = 0.017) was reduced.ConclusionsIn patients with FCHL treated with conventional lipid-lowering therapy, the addition of pioglitazone led to significant improvements in MGU and MBF, with a favorable effect on blood lipid and metabolic parameters. (A study to investigate the effect of pioglitazone on whole body and myocardial glucose uptake and myocardial blood flow/coronary vasodilator reserve in patients with familial combined hyperlipidaemia; http://www.controlled-trials.com/mrct/trial/230761/ISRCTN78563659; ISRCTN78563659
- …