6 research outputs found

    Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level

    Get PDF
    BACKGROUND: Volatile thiols largely contribute to the organoleptic characteristics and typicity of Sauvignon blanc wines. Among this family of odorous compounds, 3-sulfanylhexan-1-ol (3SH) and 4-methyl-4-sulfanylpentan-2-one (4MSP) have a major impact on wine flavor. These thiols are formed during alcoholic fermentation by the yeast from odorless, non-volatile precursors found in the berries and the must. The present study investigates the effects of vine nitrogen (N) status on 3SH and 4MSP content in Sauvignon blanc wine and on the glutathionylated and cysteinylated precursors of 3SH (Glut-3SH and Cys-3SH) in the berries and the must. This is paralleled by a RNA-seq analysis of gene expression in the berries. The impact of N supply on the expression of the glutathione-S-transferase 3 and 4 (VviGST3 and VviGST4) and the Îł-glutamyltranspeptidase (VviGGT), considered as key genes in their biosynthesis, was also evaluated.[br/] RESULTS: N supply (N100 treatment) increased the 3SH content in wine while no effect was noticed on 4MSP level. Furthermore, N supply increased Glut-3SH levels in grape berries at late berry ripening stages, and this effect was highly significant in must at harvest. No significant effect of N addition was noticed on Cys-3SH concentration. The transcript abundance of the glutathione-S-transferases VviGST3 and VviGST4 and the Îł-glutamyltranspeptidase (VviGGT), were similar between the control and the N100 treatment. New candidate genes which might be implicated in the biosynthetic pathway of 3SH precursors were identified by whole transcriptome shotgun sequencing (RNA-seq).[br/] CONCLUSIONS: High vine N status has a positive effect on 3SH content in wine through an increase of Glut-3SH levels in grape berries and must. Candidate GSTs and glutathione-S-conjugates type transporters involved in this stimulation were identified by RNA-seq analysis

    Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine

    Get PDF
    Although there are many chemical compounds present in wines, only a few of these compounds contribute to the sensory perception of wine flavor. This review focuses on the knowledge regarding varietal aroma compounds, which are among the compounds that are the greatest contributors to the overall aroma. These aroma compounds are found in grapes in the form of nonodorant precursors that, due to the metabolic activity of yeasts during fermentation, are transformed to aromas that are of great relevance in the sensory perception of wines. Due to the multiple interactions of varietal aromas with other types of aromas and other nonodorant components of the complex wine matrix, knowledge regarding the varietal aroma composition alone cannot adequately explain the contribution of these compounds to the overall wine flavor. These interactions and the associated effects on aroma volatility are currently being investigated. This review also provides an overview of recent developments in analytical techniques for varietal aroma identification, including methods used to identify the precursor compounds of varietal aromas, which are the greatest contributors to the overall aroma after the aforementioned yeast-mediated odor release

    Effects on varietal aromas during wine making: a review of the impact of varietal aromas on the flavor of wine

    No full text
    corecore