2,170 research outputs found

    Development of high critical current density in multifilamentary round-wire Bi2Sr2CaCu2O8+x by strong overdoping

    Full text link
    Bi2Sr2CaCu2O8+x is the only cuprate superconductor that can be made into a round-wire conductor form with a high enough critical current density Jc for applications. Here we show that the Jc(5 T,4.2 K) of such Ag-sheathed filamentary wires can be doubled to more than 1.4x10^5 A/cm^2 by low temperature oxygenation. Careful analysis shows that the improved performance is associated with a 12 K reduction in transition temperature Tc to 80 K and a significant enhancement in intergranular connectivity. In spite of the macroscopically untextured nature of the wire, overdoping is highly effective in producing high Jc values.Comment: 4 figure

    Electrodynamics of superconducting pnictide superlattices

    Full text link
    It has been recently reported (S. Lee et al., Nature Materials 12, 392, 2013) that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multi-gap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.Comment: 4 pages, two figure

    Observation of a coherence peak and pair-breaking effects in THz conductivity of BaFe22x_{2-2x}Co2x_{2x}As2_2

    Full text link
    We report a study of high quality pnictide superconductor BaFe1.84_{1.84}Co0.16_{0.16}As2_2 thin films using time-domain THz spectroscopy. Near Tc_c we find evidence for a coherence peak and qualitative agreement with the weak-coupling Mattis-Bardeen form of the conductivity. At low temperature, we find that the real part of the THz conductivity is not fully suppressed and σ2\sigma_2 is significantly smaller than the Matthis-Bardeen expectation. The temperature dependence of the penetration depth λ\lambda follows a power law with an unusually high exponent of 3.1. We interpret these results as consistent with impurity scattering induced pair-breaking. Taken together our results are strong evidence for an extended s±\pm symmetry order parameter.Comment: 4.2 pages, 4 figures, submitted. v2: references format corrected, no change to tex

    Reduction of gas bubbles and improved critical current density in Bi-2212 round wire by swaging

    Full text link
    Bi-2212 round wire is made by the powder-in-tube technique. An unavoidable property of powder-in-tube conductors is that there is about 30% void space in the as-drawn wire. We have recently shown that the gas present in the as-drawn Bi-2212 wire agglomerates into large bubbles and that they are presently the most deleterious current limiting mechanism. By densifying short 2212 wires before reaction through cold isostatic pressing (CIPping), the void space was almost removed and the gas bubble density was reduced significantly, resulting in a doubled engineering critical current density (JE) of 810 A/mm2 at 5 T, 4.2 K. Here we report on densifying Bi-2212 wire by swaging, which increased JE (4.2 K, 5 T) from 486 A/mm2 for as-drawn wire to 808 A/mm2 for swaged wire. This result further confirms that enhancing the filament packing density is of great importance for making major JE improvement in this round-wire magnet conductor.Comment: To be published in IEEE Transactions on Applied Superconductivity, 23, xxxxxx (2013

    Evidence for length-dependent wire expansion, filament dedensification and consequent degradation of critical current density in Ag-alloy sheathed Bi-2212 wires

    Full text link
    It is well known that longer Bi-2212 conductors have significantly lower critical current density (Jc) than shorter ones, and recently it has become clear that a major cause of this reduction is internal gas pressure generated during heat treatment, which expands the wire diameter and dedensifies the Bi-2212 filaments. Here we report on the length-dependent expansion of 5 to 240 cm lengths of state-of-the-art, commercial Ag alloy-sheathed Bi-2212 wire after full and some partial heat treatments. Detailed image analysis along the wire length shows that the wire diameter increases with distance from the ends, longer samples often showing evident damage and leaks provoked by the internal gas pressure. Comparison of heat treatments carried out just below the melting point and with the usual melt process makes it clear that melting is crucial to developing high internal pressure. The decay of Jc away from the ends is directly correlated to the local wire diameter increase, which decreases the local Bi-2212 filament mass density and lowers Jc, often by well over 50%. It is clear that control of the internal gas pressure is crucial to attaining the full Jc of these very promising round wires and that the very variable properties of Bi-2212 wires are due to the fact that this internal gas pressure has so far not been well controlled

    Reconstruction of MIS 5 climate in the central Levant using a stalagmite from Kanaan Cave, Lebanon

    Get PDF
    Lying at the transition between the temperate Mediterranean domain and subtropical deserts, the Levant is a key area to study the palaeoclimatic response over glacial–interglacial cycles. This paper presents a precisely dated last interglacial (MIS 5) stalagmite (129–84 ka) from the Kanaan Cave, Lebanon. Variations in growth rate and isotopic records indicate a warm humid phase at the onset of the last interglacial at ~ 129 ka that lasted until ~ 125 ka. A gradual shift in speleothem isotopic composition (125–122 ka) is driven mainly by the δ18O source effect of the eastern Mediterranean surface waters during sapropel 5 (S5). The onset of glacial inception began after ~ 122 ka, interrupted by a short wet pulse during the sapropel 4 (S4) event. Low growth rates and enriched oxygen and carbon values until ~ 84 ka indicate a transition to drier conditions during Northern Hemisphere glaciation

    New Fe-based superconductors: properties relevant for applications

    Full text link
    Less than two years after the discovery of high temperature superconductivity in oxypnictide LaFeAs(O,F) several families of superconductors based on Fe layers (1111, 122, 11, 111) are available. They share several characteristics with cuprate superconductors that compromise easy applications, such as the layered structure, the small coherence length, and unconventional pairing, On the other hand the Fe-based superconductors have metallic parent compounds, and their electronic anisotropy is generally smaller and does not strongly depend on the level of doping, the supposed order parameter symmetry is s wave, thus in principle not so detrimental to current transmission across grain boundaries. From the application point of view, the main efforts are still devoted to investigate the superconducting properties, to distinguish intrinsic from extrinsic behaviours and to compare the different families in order to identify which one is the fittest for the quest for better and more practical superconductors. The 1111 family shows the highest Tc, huge but also the most anisotropic upper critical field and in-field, fan-shaped resistive transitions reminiscent of those of cuprates, while the 122 family is much less anisotropic with sharper resistive transitions as in low temperature superconductors, but with about half the Tc of the 1111 compounds. An overview of the main superconducting properties relevant to applications will be presented. Upper critical field, electronic anisotropy parameter, intragranular and intergranular critical current density will be discussed and compared, where possible, across the Fe-based superconductor families
    corecore