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Abstract. Lying at the transition between the temperate

Mediterranean domain and subtropical deserts, the Levant is

a key area to study the palaeoclimatic response over glacial–

interglacial cycles. This paper presents a precisely dated

last interglacial (MIS 5) stalagmite (129–84 ka) from the

Kanaan Cave, Lebanon. Variations in growth rate and iso-

topic records indicate a warm humid phase at the onset of

the last interglacial at ∼ 129 ka that lasted until ∼ 125 ka.

A gradual shift in speleothem isotopic composition (125–

122 ka) is driven mainly by the δ18O source effect of the

eastern Mediterranean surface waters during sapropel 5 (S5).

The onset of glacial inception began after ∼ 122 ka, inter-

rupted by a short wet pulse during the sapropel 4 (S4) event.

Low growth rates and enriched oxygen and carbon values

until ∼ 84 ka indicate a transition to drier conditions during

Northern Hemisphere glaciation.

1 Introduction

Located at the interface between mid- and high-latitude cli-

mate systems, and affected by both the North Atlantic Os-

cillation and the monsoonal system over Africa, the Lev-

ant region (eastern Mediterranean Basin) has the unique

potential to record the occurrence of climatic changes in

both systems. Known for its long record of prehistoric hu-

man settlements, the Levant straddles the transition zone be-

tween the more humid Mediterranean climate in the north

and the arid Saharo-Arabian desert climate regime in the

south. This transition zone is characterized by steep pre-

cipitation and temperature gradients. Over the past decade,

several studies have attempted to understand the palaeo-

climate of this critical region (Fig. 1a) using both marine

(Kallel et al., 1997; Rossignol-Strick and Paterne, 1999;

Emeis et al., 2003) and continental palaeoclimate records

(Frumkin et al., 2000; Bar-Matthews et al., 2003; Kolodny

et al., 2005; Develle et al., 2011; Ayalon et al., 2013; Vaks

et al., 2010; Gasse et al., 2015). A key period for under-

standing the climate system in the Levant is the last inter-

glacial: Marine Isotope Stage (MIS) 5. This is generally con-

sidered to be a warm period, comparable to the present-

day climate, although this is still under considerable de-

bate (Vaks et al., 2003; Lisker et al., 2010; Ayalon et al.,

2002, 2013; Bar-Matthews, 2014). However, discrepancies

between different palaeoclimate archives exist, particularly

between speleothem and lacustrine archives. In particular, in-

consistencies between records from the Negev Desert (Vaks

et al., 2003, 2006), central Israel/Palestine (Bar-Matthews et

al., 2000, 2003; Frumkin et al., 2000), and Lebanon (Develle

et al., 2011; Gasse et al., 2011, 2015), as well as between the

eastern Mediterranean coastline (Ayalon et al., 2013) and in-

ner basins (e.g. Dead Sea basin, DSB; Kolodny et al., 2005;

Enzel et al., 2008; Lisker at al., 2010), are evident. In partic-

ular, speleothem isotopic records of Soreq, Peqiin, and West
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Figure 1. The eastern Mediterranean showing the location of palaeoclimate records including this study and the major wind trajectories

(Saaroni et al., 1998), including the mid-latitude westerlies, and occasional incursions from the Sharav cyclone and the Sharqiya. The north–

south and east–west precipitation gradients are indicated by dashed dark lines (isohyets in mm). CL: Cyprus Low. The locations of Kanaan

Cave and other Levantine palaeoclimatic records spanning the MIS 5 period cited in the text are numbered 1 to 14. Records derived from

marine studies are indicated by points, lake level reconstructions and pollen data by rectangles, and speleothems by stars. (1) Core MD

70-41 (Emeis et al., 2003); (2) core LC21 (Grant et al., 2012); (3) core ODP Site 967 (Rohling et al., 2002, 2004; Emeis et al., 2003;

Scrivner et al., 2004); (4) core ODP Site 968 (Ziegler et al., 2010); (5) Kanaan Cave; (6) Peqiin Cave (Bar-Matthews et al., 2003); (7) West

Jerusalem Cave (Frumkin et al., 1999, 2000); (8) Soreq Cave (Bar-Matthews et al., 2000, 2003); (9) Tsavoa Cave (Vaks et al., 2006, 2013);

(10) Negev composite speleothems from Ashalim, Hol-Zakh, and Ma’ale-ha-Meyshar caves (Vaks et al., 2010); (11) lakes of the Dead Sea

basin (Kolodny et al., 2005; Waldmann et al., 2009; Lisker et al., 2010); (12) lake formation at Mudawwara (Petit-Maire et al., 2010); (13)

Yammouneh palaeolake (Develle et al., 2011; Gasse et al., 2011, 2015); and (14) Lake Van (Shtokhete et al., 2014; Litt et al., 2014).

Jerusalem caves suggest the interglacial optimum was wet,

but low lake levels in the DSB are indicative of drier condi-

tions during the same period.

Whereas these different continental records reflect

changes in atmospheric circulation, regional topographic

patterns, and/or site-specific climatic and hydrological fac-

tors, the lack of detailed, accurately dated long-term records

from the northern Levant, especially from different conti-

nental archives, limits our understanding of the regional re-

sponse to climatic conditions during MIS 5. This lack of

data restricts the opportunities to resolve the inconsisten-

cies between palaeoclimate records across the region. This

study attempts to resolve this by providing a new high-

resolution record obtained from a speleothem from a cave

in the northern Levant. Speleothems are secondary chemical

cave deposits, which provide high-resolution proxy tools for

palaeoclimate reconstruction (Genty et al., 2001; Drysdale

et al., 2007, 2009). Recent studies highlight the significance

of speleothem records, in particular for achieving precise

chronologies of continental climate changes (Wang et al.,

2001; Genty et al., 2003, 2006; Fairchild et al., 2006; Verhey-

den et al., 2008, 2015; Cheng et al., 2009, 2015). In this pa-

per, we examine the petrography, growth history, and stable

isotope geochemistry of a stalagmite from Kanaan Cave, sit-

uated close to the Mediterranean coast on the western flank of

Mount Lebanon near Beirut, Lebanon. This speleothem pro-

vides a precise U–Th-dated continental record of climate his-

tory from the northern Levant spanning the last interglacial

and the glacial inception of this region.

2 Climate and palaeoclimatic setting

Lebanon is located in the northern Levant between latitudes

33◦03′ N and 34◦41′ N (Fig. 1). The western side of the

country is characterized by a Mediterranean climate with

an annual precipitation varying between 880 and 1100 mm

along the coastline (Republic of Lebanon, 2003 – Official

Report No. 28766-LE). The climate is seasonal, with wet

winters (between November and February) and dry, hot sum-

mers (from May to October). The present climate is in-

fluenced by the Atlantic westerlies, which bring in moist

winds associated with extra-tropical cyclones. These origi-

nate in the Atlantic and track east across the Mediterranean

Sea, forming a series of subsynoptic low-pressure systems.

In winter, outbreaks of cold air plunging south over the

relatively warm Mediterranean enhance cyclogenesis, creat-
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ing the Cyprus Low (Fig. 1). These low-pressure systems

drive moist air onshore, generating intense orographic rain-

fall across the mountains of the northern Levant. The dura-

tion, intensity, and track of these storm systems strongly in-

fluence the amount of rainfall in this region.

Conditions during the last interglacial period (LIG) are

thought to have been similar to that of today. Marine Iso-

tope Stage 5 is generally known as a period of minimum

ice volume between 130 and 75 ka (Emiliani, 1955). The

LIG, often defined as being equivalent to MIS 5e (Shack-

leton et al., 2002), was characterized by a global mean sur-

face temperature less than 2 ◦C than present (Otto-Bliesner et

al., 2013), caused by the orbital forcing of insolation (Berger

and Loutre, 1991). The mean sea level stood 4 to 6 m higher

than present (Kopp et al., 2009), with an important contri-

bution from the Greenland ice sheet (Cuffey and Marshall,

2000). The warmest interval, MIS 5e, was followed by two

cold episodes in the ocean (MIS 5d and MIS 5b), alternating

with two warmer periods (MIS 5c and MIS 5a).

In the eastern Mediterranean Basin, periods of anoxic

conditions associated with the formation of sapropels dur-

ing MIS 5 are generally related to wet conditions. These

horizons are considered to have formed during periods of

increased discharge down the River Nile (Rohling et al.,

2002, 2015b; Scrivner et al., 2004), linked to enhanced low-

latitude hydrological activity in the Nile headwaters. This

peak in rainfall corresponds closely with high summer in-

solation (Rohling et al., 2002; Moller et al., 2012) and

with minima in the precession cycle (Lourens et al., 1996).

At that time, the eastern Mediterranean region also experi-

enced enhanced pluvial conditions (Cheddadi and Rossignol-

Strick, 1995; Rossignol-Strick and Paterne, 1999; Kallel et

al., 2000). Wet conditions are demonstrated by pollen as-

semblages found within the sapropel 5 (S5) event from the

northeastern Mediterranean Basin (Cheddadi and Rossignol-

Strick, 1995).

Onshore, the climate in the Levant region during MIS 5

has been reconstructed from lacustrine records from interior

lake basins such as the Dead Sea and Yammouneh (Kolodny

et al., 2005; Gasse et al., 2011, 2015) and speleothem records

from central and southern Israel (Frumkin et al., 1999, 2000;

Bar-Matthews et al., 1999, 2000, 2003; Ayalon et al., 2013,

Vaks et al., 2006, 2010). These archives suggest that climate

was generally wet and cold during Termination II (∼140–

130 ka). After Termination II, the region experienced an in-

tense warm period coinciding with the development of S5

in the eastern Mediterranean (Rossignol-Strick and Paterne,

1999; Emeis et al., 2003; Rohling et al., 2002; Ziegler et

al., 2010). From ∼130 to 120 ka, speleothem records from

the Peqiin, Soreq, and West Jerusalem caves show periods of

rapid growth and decrease in δ18O values mainly attributed to

higher rainfall, suggesting conditions were wetter than dur-

ing the early Holocene period (Bar-Matthews et al., 2000,

2003). Corresponding high-δ13C records (∼ 0 ‰) approach-

ing those of the host carbonate were interpreted as a conse-

quence of soil denudation due to high surface runoff in Soreq

Cave (Bar-Matthews et al., 2003). However, relatively high

(∼−5 ‰) and fluctuating δ13C in West Jerusalem Cave sug-

gest extremely dry and unstable conditions during which a

C4 vegetation type was introduced in this area (Frumkin et

al., 2000). Gasse et al. (2011, 2015) suggest wet conditions

(∼125–117 ka) as shown in the pollen assemblages and oxy-

gen isotopes from the Yammouneh palaeolake, in northern

Lebanon. In contrast, the DSB, located to the south (Fig. 1),

remained dry during this period (Kolodny et al., 2005). The

Samra, Amora, and Lisan lakes, precursors of the Dead Sea,

showed lower stands than during the Holocene, even though

a slight rise occurred during the last interglacial maximum

(Waldmann et al., 2009).

The return to slightly drier conditions, as suggested by an

increase in δ18O in speleothems from the Soreq and Peqiin

caves is dated at ∼ 118–120 ka (Bar-Matthews et al., 2000,

2003). Lower rainfall amounts prevailed until 110 ka. But the

decrease in δ13C in speleothems from these caves (Fig. 1) ev-

idences a reintroduction of a C3 vegetation cover, indicative

of wet conditions (Frumkin et al., 2000). In northern Lebanon

the Yammouneh palaeolake records (Develle et al., 2011) lo-

cated at higher altitude suggest seasonal changes with wet

winters, dry summers, and expanded steppe vegetation cover.

From ∼110 to ∼100 ka, a moderate wet period is sug-

gested by depleted δ18O values in speleothems from the

Soreq and Peqiin caves and by an increase in arboreal pollen

taxa in northern Lebanon (Develle et al., 2011). This coin-

cides with anoxic conditions (sapropel 4, S4) in the east-

ern Mediterranean (Emeis et al., 2003). Between ∼100 and

∼85 ka, a return to a slightly drier climate is suggested by

speleothem deposition in both the Soreq and Peqiin caves

with an increase in δ18O values. However, the continued and

more stable C3 vegetation cover (Frumkin et al., 2000) in

West Jerusalem Cave and the minor lake level increase in

the DSB suggest that the climate was probably wetter in

the DSB (Waldmann et al., 2009). In northern Lebanon, the

high-altitude Yammouneh palaeolake records suggest sea-

sonal variations with steppe vegetation cover similar to the

MIS 5d period.

From ∼85.0 to ∼75.0 ka, the last wet and warm phase of

MIS 5 occurred in the Levant, corresponding with the sapro-

pel 3 (S3) event in the eastern Mediterranean. In the Soreq,

Peqiin (Bar-Matthews et al., 1999, 2003), and Ma’aele Ef-

frayim caves (Vaks et al., 2003, 2006), depleted speleothem

δ18O values suggest a moderate wet period at this time in

agreement with the increase in arboreal pollen taxa in the

Yammouneh lacustrine record (Develle et al., 2011). How-

ever, the level of Lake Samra in the DSB decreased signifi-

cantly (Waldmann et al., 2009) and little speleothem deposi-

tion occurred in caves situated in the Negev Desert (Fig. 1)

after MIS 5c (Vaks et al., 2006, 2010), both suggesting a drier

climate during MIS 5a in the south of the region.

It is clear that there are significant discrepancies between

the climatic records between the northern (Lebanon, northern
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Syria, and southeastern Turkey) and southern Levant (Jordan,

Israel/Palestine), possibly driven by a strong north–south

palaeoclimatic gradient that varied dramatically in amplitude

over short distances and different climatic trends (wet/dry)

especially during MIS 5e. In the northern Levant, few records

span the MIS 5 period (Gasse et al., 2011, 2015; Develle et

al., 2011). New well-dated speleothem records are needed

from this area to decipher if and when the climatic changes

that are well recorded in the southern Levant (DSB and the

Soreq and Peqiin caves on the Judean Plateau) also affected

the northern Levant (Yammouneh, western Mount Lebanon).

What is still unclear is how the entire region has responded to

the North Atlantic/Mediterranean system versus the southern

influences linked to the monsoon system (Arz et al., 2003;

Waldmann et al., 2009; Vaks et al., 2010). The K1-2010

speleothem from Kanaan Cave, Lebanon, partly fills the dis-

parity in spatial data coverage in the Levant, and may help

understand the spatial climate heterogeneity, if any, of the

palaeoclimatic patterns.

3 Location of Kanaan Cave

Kanaan Cave is located on the western flank of central

Mount Lebanon, 15 km northeast of Beirut at 33◦54′25 N,

35◦36′25 E. The cave developed in the Middle Jurassic

Kesrouane Formation, a thick predominantly micritic lime-

stone and dolomite sequence with an average stratigraphic

thickness of 1000 m (Fig. 2a). Being located only 2.5 km

from the Mediterranean coast and at just 98 m above sea

level (a.s.l.), the cave is strongly influenced by the maritime

Mediterranean climate.

Kanaan Cave is a 162 m long relict conduit discovered dur-

ing quarrying in 1997. A 23 cm long stalagmite, sample K1-

2010 was collected from the top of a fallen limestone block

in the central part of the Collapse I chamber, approximately

20 m from the (formerly closed) cave entrance (Fig. 2b–c).

The fallen block rests on an unknown thickness of sediment.

The passage height at this location is 2.4 m with approxi-

mately 50 m of limestone overburden. Presently, the stalag-

mite receives no dripping water, although some drip water

occurs in other parts of the Collapse I chamber during win-

ter and spring seasons. The cave is generally dry during the

summer months. The air temperature in Collapse I chamber

is 20 ◦C± 1 ◦C.

4 Methods

The stalagmite (sample K1-2010) was cut along its growth

axis after retrieval from the cave, and polished using 120–

4000 µm silicon carbide (SiC) paper. Petrographic observa-

tions were performed with an optical binocular microscope.

The first 10 U-series datings were carried out at the NERC

Isotope Geosciences Laboratory (NIGL), British Geological

Survey, Keyworth, UK. Seven new ages were recently com-

pleted by the NIGL geochemistry laboratory and the Geo-

chemistry Laboratory, Earth Science Department, Univer-

sity of Melbourne, Australia. Powdered 100 to 400 mg cal-

cite samples were collected with a dental drill from 11 lev-

els along the growth axis of the speleothem, taking care to

sample along growth horizons. Chemical separation and pu-

rification of uranium and thorium were performed following

the procedures of Edwards et al. (1987) with modifications.

Data were obtained on a Thermo Neptune Plus multicol-

lector inductively coupled plasma mass spectrometer (MC-

ICP-MS) following procedures modified from Anderson et

al. (2008), Heiss et al. (2012), and Hellstrom (2006). Mass

bias and SEM gain for Th measurements were corrected us-

ing an in-house 229Th–230Th–232Th reference solution cali-

brated against CRM 112a. Quoted uncertainties for activity

ratios, initial 234U / 238U, and ages include a ca. 0.2 % uncer-

tainty calculated from the combined 236U / 229Th tracer cal-

ibration uncertainty and measurement reproducibility of ref-

erence materials (HU-1, CRM 112a, in-house Th reference

solution) as well as the measured isotope ratio uncertainty.

Ages are calculated from time of analysis (2014) and also in

years before 1950 with an uncertainty at the 2σ level, typi-

cally of between 500 and 1000 years (see Table 1).

Samples for δ13C and δ18O measurements were drilled

along the speleothem central axis using a 1 mm dental drill.

Ethanol was used to clean the speleothem surface and drill

bit prior to sampling. Sample resolution was 1 to 1.2 mm.

A total of 206 samples were analysed using the Nu Carb

carbonate device coupled to a Nu Perspective MS at the

Vrije Universiteit Brussel with analytical uncertainties less

than 0.1 % (2 s) for oxygen and 0.05 % (2 s) for carbon. Iso-

topic equilibrium analyses were carried out using six re-

cent calcite samples collected in the cave and Hendy tests

(Hendy, 1971) were carried out at five different locations

along the speleothem growth axis. No evidence for severe

out-of-equilibrium deposition was detected along the growth

axis of the stalagmite.

Three seepage water samples and three water pool samples

from Kanaan Cave were collected for δ18O measurements

in hermetically sealed glass bottles. Measurements were per-

formed at the Vrije Universiteit Brussel on a Picarro L2130-

i analyser using the cavity ring-down spectroscopy (CRDS)

technique (Van Geldern and Barth Johannes, 2012). All val-

ues are reported in per mill (‰) relative to Vienna Stan-

dard Mean Ocean Water (V-SMOW2). Analytical uncertain-

ties (2σ ) were less than 0.10 ‰.

5 Results

5.1 Petrography

The speleothem collected from Kanaan Cave is 23 cm long

and up to 10 cm wide (Fig. 2). In section it displays regular

layers of dense calcite ranging in colour from dark brown

to light yellow with a regular thin (< 0.2 mm) lamination
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Figure 2. (a) Location map of Kanaan Cave and the continental records in the Levant. (a) Geological map of the Antelias region (western

flank of central Mount Lebanon; Dubertret, 1955). (b) Photo of K1-2010 stalagmite in the Collapse Chamber. (c) Geomorphological section

of Kanaan Cave showing the location of the stalagmite K1-2010 (Nehme, 2013).

Table 1. U–Th results of K1-2010 dating.

Sample number Distance from U 232Th [230Th/232Th] [230Th/238U] [234U/238U] ρ08−48 Age Age Age BP1950 [234U/238U]initial

top (cm) (ppm) (ppb) (measured) (corrected) (corrected) uncorrected (ka) corrected (ka) corrected (ka)

KA STM 1-3 10.0 0.05971 0.7545 108.5 0.4486± 0.56 0.8439± 0.33 0.27 85.83± 0.70 85.36± 0.78 85.30± 0.78 0.8014± 0.50
∗ 0.4463± 0.93 0.8433± 0.47 0.58 84.81± 1.01 84.75± 1.01 0.8009± 0.62

KA STM 1-18 31.0 0.04279 0.5226 112.1 0.4546± 0.62 0.8478± 0.29 0.27 86.92± 0.79 86.46± 0.85 86.40± 0.85 0.8057± 0.41
∗ 0.4524± 0.95 0.8471± 0.43 0.58 85.93± 1.05 85.86± 1.05 0.8052± 0.58

KA STM 1-12 42.0 0.04502 0.1626 367.1 0.4352± 0.34 0.8478± 0.15 0.08 80.94± 0.45 80.81± 0.46 80.74± 0.46 0.8088± 0.25
∗ 0.4345± 0.41 0.8476± 0.18 0.28 80.65± 0.49 80.59± 0.49 0.8087± 0.25

KA STM 1-11 58.0 0.07340 0.2089 516.7 0.4829± 0.30 0.8532± 0.13 0.06 94.27± 0.50 94.21± 0.51 94.15± 0.51 0.8085± 0.20
∗ 0.4824± 0.34 0.8530± 0.15 0.22 94.04± 0.53 93.98± 0.53 0.8083± 0.25

KA STM 1-17 69.0 0.05857 0.3388 252.3 0.4868± 0.49 0.8500± 0.23 0.09 96.33± 0.85 96.11± 0.86 96.04± 0.86 0.8042± 0.35
∗ 0.4859± 0.58 0.8497± 0.28 0.30 95.85± 0.91 95.79± 0.91 0.8031± 0.40

KA STM 1-10 89.0 0.05592 0.7053 121.9 0.5037± 0.45 0.8579± 0.21 0.44 100.41± 0.61 99.94± 0.69 99.88± 0.69 0.8116± 0.25
∗ 0.5017± 0.78 0.8573± 0.37 0.72 99.40± 0.94 99.34± 0.94 0.8111± 0.49

KA STM 1-2 114.0 0.06580 0.8400 124.6 0.5208± 0.51 0.8716± 0.31 0.26 103.03± 0.90 102.57± 0.96 102.50± 0.96 0.8284± 0.48
∗ 0.5188± 0.80 0.8710± 0.43 0.58 102.03± 1.14 101.97± 1.14 0.8279± 0.60

KA STM 1-9 129.0 0.07067 0.8548 139.8 0.5541± 0.40 0.8809± 0.19 0.42 112.31± 0.68 111.88± 0.74 111.81± 0.74 0.8367± 0.24
∗ 0.5523± 0.67 0.8804± 0.34 0.72 111.37± 0.95 111.31± 0.95 0.8363± 0.48

KA STM 1-8 140.0 0.05426 2.676 35.1 0.5623± 1.1 0.8640± 0.59 0.82 121.74± 0.82 119.91± 1.53 119.84± 1.53 0.8092± 0.87
∗ 0.5551± 2.47 0.8616± 1.32 0.86 117.75± 2.98 117.68± 2.98 0.8071± 1.86

KA STM 1-7 158.0 0.05155 1.207 74.1 0.5671± 0.59 0.8558± 0.31 0.67 125.46± 0.89 124.57± 1.08 124.51± 1.08 0.7950± 0.50
∗ 0.5638± 1.16 0.8546± 0.63 0.84 123.54± 1.62 123.48± 1.62 0.7940± 0.88

KA STM 1-16 159.0 0.04663 0.8603 96.9 0.5978± 0.68 0.8602± 0.33 0.31 137.62± 1.91 136.91± 1.94 136.85± 1.94 0.7942± 0.59
∗ 0.5953± 1.01 0.8593± 0.54 0.65 136.08± 2.18 136.02± 2.18 0.7934± 0.86

KA STM 1-6 167.0 0.07508 3.488 37.5 0.5665± 1.0 0.8298± 0.56 0.85 135.85± 0.97 133.99± 1.63 133.93± 1.63 0.7515± 0.93
∗ 0.5598± 2.27 0.8270± 1.26 0.90 131.80± 3.06 131.74± 3.06 0.7491± 1.87

KA STM 1-15 169.0 0.1179 0.3388 555.5 0.5525± 0.30 0.8319± 0.17 0.04 126.63± 0.90 126.51± 0.90 126.44± 0.90 0.7598± 0.32
∗ 0.5521± 0.33 0.8317± 0.19 0.17 126.37± 0.92 126.31± 0.92 0.7596± 0.36

KA STM 1-5 174.0 0.1425 1.623 147.2 0.5497± 0.37 0.8297± 0.18 0.47 126.47± 0.77 126.02± 0.83 125.96± 0.83 0.7570± 0.26
∗ 0.5480± 0.62 0.8291± 0.33 0.76 125.50± 1.03 125.44± 1.03 0.7564± 0.53

KA STM 1-4 180.0 0.1549 0.5079 520.1 0.5602± 0.27 0.8328± 0.13 0.06 129.92± 0.80 129.79± 0.80 129.72± 0.80 0.7588± 0.26
∗ 0.5598± 0.31 0.8326± 0.15 0.27 129.64± 0.82 129.57± 0.82 0.7586± 0.26

KA STM 1-14 192.0 0.1144 0.5855 321.1 0.5520± 0.35 0.8298± 0.18 0.10 127.26± 1.01 127.05± 1.01 126.99± 1.01 0.7564± 0.34
∗ 0.5512± 0.42 0.8295± 0.22 0.34 126.81± 1.05 126.74± 1.05 0.7561± 0.38

UMD120325-206 199.0 0.0630 0.1006 1058.1 0.5440± 0.20 0.8188± 23 127.43± 1.28 127.36± 1.27 127.30± 1.27 0.7404± 0.39

127.28± 1.30 127.22± 1.30 0.7405± 0.40

KA STM 1-13 206.0 0.1241 8.566 34.6 0.7837± 0.90 0.9177± 0.58 0.89 228.61± 2.90 226.14± 3.28 226.08± 3.28 0.8442± 1.18
∗ 0.7787± 1.97 0.9157± 1.3 0.96 223.21± 4.78 223.15± 4.78 0.8418± 0.26

Data in bold calculated using average continental detritus U–Th composition: (230Th / 238U)= 1.0± 50%, (232Th / 238U)= 1.2± 50%, (234U / 238U)= 1± 50%. ∗ Data in italics calculated using detritus U–Th composition of Kaufmann et al. (1998):

(230Th / 238U)= 0.9732± 50%, (232Th / 238U)= 0.5407± 50%, (234U / 238U)= 1± 50%. Underlined data are uncorrected activity ratios.
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in places. The speleothem has two clearly defined growth

phases, characterized by an abrupt hiatus where the stalag-

mite was tilted around 45◦ and then recommenced growing.

The lower segment (Segment 1) is 8.2 cm long and 8.5 cm

wide (Fig. 3) and displays a general growth axis tilted at a

45◦ angle (clockwise) relative to upper segment. The regu-

lar deposition of translucent columnar crystals is interrupted

by clayey layers (discontinuities) mostly at 17 cm, from 15.6

to 15.2 cm, and at 14.2 cm. Between 12.2 and 14.2 cm, the

lamina in the central axial part of the speleothem show con-

tinuous clear and translucent layering, but which becomes

increasingly clayey towards the outer edge of the sample.

The higher segment (Segment 2) is 12.3 cm long and 4–6 cm

wide. At the base, the general growth axis is tilted at 16◦ (an-

ticlockwise) to the azimuth axis, gradually becoming more

vertical towards the top. The general structure of this sec-

tion is characterized by uniform yellow translucent columnar

crystals interrupted by marked opaque yellow layers, at 9, 8,

5.6, 3.2, and 2.8 cm depth (from the top of the stalagmite).

5.2 Uranium series (U–Th) dating

A rectified age model is proposed here based on the new ages

recently completed: the stalagmite grew from 127.2± 1.3

(2σ ) to 85.4± 0.8 ka (2σ ). An extrapolated age of 83.1 ka

for the top of the stalagmite was calculated from the age–

depth model in Fig. 4 obtained using the P_Sequence func-

tion of the OxCal geochronology application, which is based

on Bayesian statistics (Bronk Ramsey, 2008). All ages in Ta-

ble 1 are calculated with two different possible detrital U–Th

compositions, as no data from Kanaan Cave are presently

available to better constrain the corrections. The first correc-

tion is the typical continental detritus composition as used

by Verheyden et al. (2008) and the second is that used deter-

mined by Kauffman et al. (1998) for the Soreq caves which

might better reflect the prevalent detritus composition in a

carbonate-dominated terrain.

Basically the age uncertainties and 230Th / 232Th activity

ratios in the data set are such that both options (i.e. Soreq

Cave vs. average continental detritus) result in statistically

equivalent dates (i.e. Sample 10: 99.94± 0.69 ka calculated

with the average continental detritus and 99.40± 0.94 ka cal-

culated using Soreq Cave detritus).

The greater number of disturbed ages in the lower seg-

ment of the stalagmite, which has comparatively high ini-

tial thorium concentrations (230Th / 232Th activity ratios as

low as 34), is most likely due to contamination of the U–Th

subsamples with organic material, or iron oxides from mud

layers that are common in this part of the record. The basal

age of 223.2± 4.8 is clearly out of sequence probably due

to accidental inclusion of host rock in the analysed sample.

Consequently, the oldest valid U–Th date is 127.2± 1.3 ka

from a sample located 7 mm above the base of the stalag-

mite, and extrapolation of the age model places the beginning

of growth at ∼ 128.8 ka. However, as no other coeval stalag-

mites from Kanaan Cave have yet been dated, it is unclear

whether the base of our record corresponds to the onset of the

LIG optimum. In general, U–Th dates from the upper seg-

ment of the stalagmite were more consistent with only one

out of seven dates (80.6± 0.5 ka) clearly out of sequence.

Following the exclusion of obvious outliers, the remain-

ing U–Th data set showed a number of age reversals. For

the purposes of age–depth modelling, where age reversals

were resolvable at the 3σ level, the younger date was as-

sumed to represent the correct age progression and the older

dates were excluded such as the basal age in the previous age

model (Verheyden et al., 2015). Age models obtained using

linear interpolation, and the OxCal package were statistically

equivalent at the 95 % confidence level, with the latter chosen

as the basis for stable isotope proxy data interpretation, ow-

ing to its more robust treatment of uncertainty propagation.

5.3 Modern cave water and calcite isotopic

compositions

Recent cave water (a proxy for rainfall δ18O) sampled from

the cave shows an average δ18O value of −5.43± 0.06 ‰.

δ18O and δD seepage water values in Kanaan Cave falls on

the Lebanese meteoric waterline (Saad et al., 2000) indicat-

ing that no severe evaporation processes occur in the epikarst

before precipitating the speleothem (see Supplement). Re-

cent calcite analyses in the cave (soda straw, recent calcite

deposition) display an average δ13C value of −11.6 ‰± 0.4

and δ18O value of −4.9 ‰± 0.7 (see Supplement). The av-

erage δ18O value for the recent calcite is close to the theoret-

ical calcite precipitation value of −4.4 ‰ (20 ◦C) – present

temperature in the cave – using the Kim and O’Neil (1997)

equilibrium equation.

5.4 Oxygen and carbon isotope series

If precipitation occurs at isotopic equilibrium, the calcite

δ18O should not show any significant enrichment along a

single lamina away from the growth axis and no covariation

between δ18O and δ13C should occur. As indicated by sev-

eral of these so-called Hendy tests (Hendy, 1971) performed

along growth layers, no severe out-of-equilibrium processes

during precipitation of the calcite seem to have occurred (see

Supplement).

The δ18O values from K1-2010 (Fig. 4) ranged from −3.5

to −7.8 ‰, with an overall mean of −5.1 ‰. Lower val-

ues (∼−7.5 ‰) are observed at the basal part of the sta-

lagmite. Values enrichment begin at ∼ 126 ka and increase

rapidly to∼−4.45 ‰ until∼ 120 ka. High δ18O values (gen-

erally between−4.4 and−4 ‰) are observed until the top of

the stalagmite at ∼ 84 ka, except for two periods with rela-

tively lower δ18O. From 102.8 to 100.8 ka (interpolated), the

δ18O values decrease from −4.6 to −6.18 ‰ in ∼ 2.0 kyr.

At ∼ 94 ka, a rapid decrease in δ18O values leads to a peak

of −5.5 ‰ at ∼ 92.3 ka (interpolated). The top of the stalag-
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Figure 3. Cut face of the K1-2010 speleothem and sketch showing the position of the uranium series age data. In Segment 1, the dashed line

indicates detrital layers and U–Th shows many more uncertainties than those in the Segment 2. The third age from the base of Segment 1 is

an outlier. Segment 1 is tilted from its initial position probably due to the suffosion of clay deposits in the Collapse Chamber that caused the

block on which the speleothem grew to subside. Red lines indicate discontinuities.

mite at ∼ 84 ka exhibit the highest δ18O values of −3.5 ‰.

The δ13C VPDB values range between −10.0 and −12.4 ‰

with an overall mean of −11.3 ‰ as shown in Fig. 5. The

δ13C curve shows relatively minor variations. However, the

most depleted values (−12 ‰) are observed at the base of

the speleothem, from∼ 129 to∼ 125.6 ka (interpolated), fol-

lowed by a δ13C enrichment of ∼ 2 ‰ from 125.6 (interpo-

lated) to ∼ 122 ka and stays around −11 ‰ between ∼ 120

and ∼ 110 ka. After ∼ 110 ka, generally lower δ13C values

prevail with a surprising stable period between ∼ 103 and

∼ 91 ka. From ∼ 91 to ∼ 87 ka, a 1.1 ‰ enrichment of car-

bon isotopic values leads to highest δ13C values of the time

series. Consequently, the stalagmite shows a tripartite parti-

tion as shown in the δ18O VPDB versus δ13C VPDB diagram

(Fig. 6) with the base featuring the most depleted δ18O and

δ13C values before ∼ 126 ka. A rapid shift towards higher

isotopic values between ∼ 126 and ∼ 120 ka and a third seg-

ment, from ∼ 120 to ∼ 83 ka, show rather stable δ13C and

δ18O values except for the 93–87 ka period characterized by

a change to lower isotopic values for oxygen and higher val-

ues for carbon.

Figure 4. Growth rate of the stalagmite with respect to distance (in

cm) from the top, using OxCal Bayesian statistics model between

two consecutive dates except in the middle part where a discontinu-

ity (hiatus) is identified.
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Figure 5. δ18O and δ13C profiles (values are in ‰ VPDB) of samples microdrilled along the growth axis of the K1-2010 stalagmite (Kanaan

Cave, Lebanon).

6 Discussion

6.1 Integrated climatic interpretation of the speleothem

proxies

Speleothem growth is conditioned by effective precipitation

and CO2 concentration, controlled mainly by the bio-activity

of the soil and consequently by the temperature (Baker and

Smart, 1995; Dreybrodt, 1988; Genty et al., 2006). Therefore

speleothem growth is typically associated with warm and

humid conditions with sufficient rainfall to maintain drip-

water flow, whereas low speleothem growth rates or hiatuses

tend to indicate cold or dry conditions (Bar-Matthews et al.,

2003), or possibly flooding. The lower part of the stalagmite

contains several clayey layers that may indicate either short

dry periods or periods during which the speleothem was cov-

ered with mud or muddy water (Fig. 3). The fact that apart

from these muddy layers the speleothem does not show any

change in crystal aspect or change in porosity suggests that

these layers may be better explained by sudden events per-

turbing slightly the speleothem deposition rather than a sig-

nificant increase in aridity or drop in temperature. Previous

studies in southern Europe (Drysdale et al., 2005; Zanchetta

et al., 2007) and in the eastern Levant (Bar-Matthews et al.,

2003; Frumkin et al., 2000; Verheyden et al., 2008) have

shown that most of the carbon in speleothem calcite is de-

rived from soil CO2 (Genty et al., 2001). The δ13C is thus

most likely to be controlled by biogenic soil CO2 produc-

tivity (Gascoyne, 1992; Hellstrom et al., 1998; Genty et al.,

2006) associated with vegetation density, which regulates

soil CO2 content via root respiration, photosynthetic and mi-

crobial activity. The changes in carbon isotopic composi-

tion (δ13C) of speleothems in the Levant are thus linked to

changes in precipitation with periods of low rainfall induc-

ing sparse vegetation and a lower contribution of “light” or-

ganic carbon in the speleothem resulting in higher δ13C value

(Frumkin et al., 2000). The low values for δ13C in the K1-

2010 around ∼ 128 ka are indicative of a 100 % C3 vegeta-

tion profile, with relatively high soil productivity suggestive

of rather mild and humid conditions.

A discontinuity (D2) is observed in the first segment

(Fig. 3) and is estimated to occur between∼110 and∼103 ka

by extrapolating the growth rates of each segment towards

the discontinuity (D2). This hiatus could be of local origin as

it is associated with a major change in the speleothem orien-

tation (Nehme et al., 2015). A striking decrease in the growth

rate to 5 mm ka−1 before the speleothem tilted seems to start

after 126 ka, before the end of the LIG (Cheng et al., 2009).

Additional U-series dates are necessary to better constrain

the age of the change in growth rate.

The middle part shows a higher growth rate (9 mm ka−1)

from ∼103 to ∼99.1 ka during the ensuing interstadial (MIS

5c). A general decrease in growth rate (5 to 7 mm kyr−1) fol-

lowed from ∼99.1 to ∼83 ka but with an unusual rapid in-

crease in growth rate (13 mm ka−1) occurred from ∼86 to

∼84 ka during MIS 5b (Fig. 4). The carbon isotope signal

shifts slightly to more positive values around ∼126–121 ka

and has the most positive values after ∼92 ka, indicating a
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gradual degradation of the soil coverage or change in vegeta-

tion type or density at the beginning of MIS 5d.

Unravelling the factors controlling the δ18O signal in

a speleothem can be more complex (McDermott, 2004;

Fairchild et al., 2006; Lachniet, 2009). The pattern of δ18O

changes in K1-2010 stalagmite is slightly different from the

δ13C, particularly the difference in the amplitude of changes

between ∼126 and 120 ka, and from 120 to 83 ka.

Speleothem δ18O is controlled by both the calcite pre-

cipitation temperature (Kim and O’Neil, 1997) and seepage

water δ18O (Lachniet, 2009). The general consensus in re-

cent years is that the principal driver of speleothem δ18O

variations through time is change in rainfall δ18O (McDer-

mott, 2004), which are forced by (i) condensation temper-

atures, (ii) rainfall amount (Dansgaard, 1964); (iii) shifts

in vapour source δ18O, or (iv) different air-mass trajecto-

ries (Rozanski et al., 1993). Until now, low speleothem

δ18O values in the Levant region were associated with

wetter conditions, while high speleothem δ18O was gener-

ally ascribed to drier periods with lower rainfall amounts

(Bar-Matthews, 2014; Verheyden et al., 2008). Important

changes in δ18O may, however, also have been linked to

changes in the source of the water vapour and/or changes

in storm tracks (Frumkin et al., 1999; Kolodny et al.,

2005; McGarry et al., 2004). From ∼ 126 to ∼ 120 ka, the

abrupt 3.2 ‰ increase in δ18O values suggests an important

change to drier conditions. The growth rate of the stalag-

mite gradually falls from a high rate (19 mm ka−1) between

126.7± 1.0 and 126.3± 0.9 ka, decreasing to 5 mm ka−1 be-

tween 126.3± 0.9 and 123.5± 1.6 ka, and to 3 mm ka−1 be-

tween 123.4± 1.6 and 117.7± 3.0 ka (Fig. 4). This gradual

drop in growth rate most probably indicates a change towards

drier conditions in agreement with the increase in δ18O val-

ues. Global sea levels reached 6 to 9 m above present sea

level during the LIG (Dutton and Lambeck, 2012), an eleva-

tion peak that could not be responsible for the observed high

amplitude of the δ18O change in the K1 speleothem. Another

mechanism is a change in the composition and source of wa-

ter vapour reaching the site. Studies of the eastern (EM), cen-

tral, and western Mediterranean marine core records show

evidence of reduced sea-surface δ18O during the onset of the

Sapropel 5 event of ∼ 2 ‰ (e.g. Kallel et al., 1997, 2000;

Emeis et al., 2003; Rohling et al., 2002; Scrivner et al., 2004;

Ziegler et al., 2010; Grant et al., 2012) and a recovery of the

same amount at the end of S5 deposition around ∼ 121 ka

(Grant et al., 2012), with a commensurate increase in the

δ18O of the EM water. Hence, a more 18O-enriched sea sur-

face of ∼ 2 ‰ at the end of the sapropel event would cause

an increase in vapour δ18O, leading to enrichment in the iso-

topic composition of the recharge waters reaching the cave.

In the Levant, moisture source was interpreted as one of the

drivers for the δ18O signal in speleothems from Soreq Cave

(Bar-Matthews et al., 2003) related to S5 (128–121 ka; Grant

et al., 2012).

Figure 6. Oxygen versus carbon stable isotopic composition (val-

ues are in ‰ VPDB) of samples microdrilled along the growth axis

of the K1-2010 stalagmite (Kanaan Cave, Lebanon). The present-

day δ18O value for the precipitated calcite was calculated using the

Kim and O’Neil (1997) equilibrium equation. The δ13C value was

obtained from the Holocene δ13C mean value of Jeita Cave (Ver-

heyden et al., 2008). This cave, located just 20 km to the north, has

a very similar climate, vegetation geology, soil type, and altitude

(98 m a.s.l.) to Kanaan Cave.

After ∼ 120 ka, the δ18O increased to an average of

∼−4.3 ‰, suggesting less depleted precipitation was reach-

ing the cave until ∼ 84 ka. This long-term δ18O enrichment,

interrupted by a short and moderate δ18O decrease during the

S4 event, marks the Northern Hemisphere glacial inception

(Fig. 6). This increase in δ18O is driven by several mech-

anisms. Once cause, the “ice volume effect”, can lead to a

higher sea water δ18O by 1.1 ‰ during glacial periods to-

gether with an increase in δ18O of speleothem calcite due to

drop in temperature of up to ∼ 8 ◦C (Frumkin et al., 1999;

Bar-Matthews et al., 2003; Kolodny et al., 2005; McGarry

et al., 2004). However, the change in the K1 speleothem

δ18O records occurs after the gradual variation in the global

interglacial–glacial changes at Termination II, suggesting a

stronger influence of other mechanisms. A second possible

driver for increased δ18O is related to changes in wind di-

rection, with more continental trajectories leading to more

enriched δ18O water vapour reaching the cave. In the south-

ern Levant, Frumkin et al. (1999) and Kolodny et al. (2005)

related δ18O signal increase during glacial periods to a south-

ward migration of the westerlies associated with the high-

pressure zone over the northern European ice sheet and thus

pushing wind trajectories further south over North Africa.

The growth rate (Fig. 3) of the stalagmite after∼ 120 ka is the

lowest of the entire profile (between 2 and 7 mm ka−1) ex-

cept for the periods between 84.8± 1.1 and 85.9± 1.1 ka and

between 102± 1.1 and 99.3± 0.9 ka. The first period has a
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growth rate of 13 mm ka−1, indicating a wet pulse that could

correspond to the pre-sapropel 3 event (Ziegler et al., 2010).

The latter period has a moderate growth rate of 9 mm ka−1

indicating a wet pulse, which coincides with the S4 event.

The discontinuity (D2), between ∼ 110.6 and ∼ 103.6 ka, is

probably linked to local factors such as change in the perco-

lation route or the tilting of the stalagmite’s axis due to the

floor suffusion beneath the block on which the speleothem

grew.

6.2 Palaeoclimate variability in MIS 5

6.2.1 An “early humid LIG”

Speleothem oxygen, carbon, and growth proxies from sam-

ple K1-2010 indicate an initial relatively warm and humid

period at ∼ 129 ka – the beginning of speleothem deposition

– which extended until ∼ 126 ka (Fig. 7). This early humid

LIG matches the timing of the eastern Mediterranean Sea S5

event (Ziegler at al., 2010; Grant et al., 2012) with high sum-

mer insolation (Berger and Loutre, 1991). In southern Eu-

rope, an early commencement of full interglacial conditions

was dated at 129± 1 ka in Corchia Cave speleothems (Drys-

dale et al., 2005). In the northern Levant, the pollen records

in Yammouneh palaeolake demonstrate the presence of tem-

perate oaks during the early LIG (Develle et al., 2011), indi-

cating sufficient humidity to enable forests to develop. More

efficient moisture retention together with developed forest

landscapes and intense groundwater circulation in northern

Lebanon prevailed during the LIG. These warm and wet con-

ditions are in agreement with similar periods identified in the

Lake Van lacustrine sequence (Litt et al., 2014; Shtokhete et

al., 2014) in northeastern Turkey and with speleothem prox-

ies from the Soreq and Peqiin caves (Ayalon et al., 2002;

Bar-Matthews et al., 2003) in southwestern Israel.

6.2.2 The 126 ka change

The pattern of δ18O depletion from sample K1-2010 records

a remarkable change between 126.3± 0.9 and ∼ 120.3 ka

(interpolated) along with an unstable enrichment pattern of

the δ13C and the δ18O (Fig. 5). However, the poor chronolog-

ical resolution of this part of the K1-2010 speleothem record

precludes the identification of any seasonality pattern at the

end of the LIG, as seen in the Yammouneh lacustrine record

in northern Lebanon (Develle et al., 2011; Gasse et al., 2015).

The K1-2010 δ18O profile undergoes a dramatic change

around ∼ 126 ka, the timing of which is very close to the on-

set of the isotopic enrichment of the water source in the east-

ern Mediterranean Sea during the S5 event (∼ 128–121 ka).

The onset of the δ18O enrichment in the K1-2010 isotopic

record coincides with the onset of the δ18OG.ruber enrichment

(Fig. 7) in core LC21 (Grant et al., 2012) and at ODP Site

967 (Emeis et al., 2003). Despite differences in dating res-

olution between marine core records and speleothems, the

shift in K1-2010 δ18O values around ∼ 126 ka demonstrates

a major source-driven change during the eastern Mediter-

ranean S5 event. Several studies (Rohling et al., 2002, 2015a;

Schmiedl et al., 2003; Scrivner et al., 2004) suggest a co-

incidence between cooling and enhanced aridity around the

Mediterranean, and the interruption of the insolation-driven

monsoon maximum for a millennial-scale episode during the

last interglacial S5. Schmiedl et al. (2003) argue that this

episode marked the onset of a regional climate deteriora-

tion following the peak (early S5) of the last interglacial.

In that case, this regional climate deterioration began at

∼ 126 ka ( Fig. 7), using the S5 timing of Grant et al. (2012)

and with the assumed linear sedimentation rate through S5

(Rohling et al., 2002). The KI-2010 isotopic profile confirms

this and provides a precise chronology of the change, tak-

ing place between 126.3± 0.9 ka and ∼ 120.3 ka (interpo-

lated). However, the amplitude of the δ18O enrichment in

the K1-2010 stalagmite from 126 to 120 ka totals ∼ 3.2 ‰

and is much higher than the amplitude of the δ18OG.ruber en-

richment (∼ 2 ‰) in the eastern Mediterranean sea (Grant et

al., 2012). This would be explained by Sapropel events in

the EMS and their derivative processes during the S5 event

(Ziegler et al., 2010): the source effect is thus a major driver

for the δ18O values change in continental records, but other

derivative factors of the S5 event contributed in the δ18O

change in K1-2010 record such as the rainfall amount, the

temperature, or changes in the wind trajectories.

With the additional U–Th datings and new records of

Soreq Cave (Grant et al., 2012), the K1-2010 δ18O pro-

file indicates that this major change occurred in phase with

other continental records in the Levant region, moving the

interpretation based on previous age model (Verheyden et

al., 2015). The δ18O and δ13C change in the K1-2010 pro-

files lasted 6000 years, started gradually, and then continued

more rapidly, ending at ∼ 120.3 ka (interpolated). The ini-

tial pattern of the change from ∼ 126 to ∼ 122 ka suggests

more gradual δ18O enrichment than the change in the Soreq

Cave δ18O records. Nonetheless, the rapid pattern of the δ18O

changes well recorded by the Soreq Cave record in that pe-

riod could not be observed in the Kanaan Cave record due to

the poor resolution of this part of the K1 speleothem with the

occurrence of short hiatuses (mud layers). A similar gradual

variation but over a larger timescale was demonstrated in the

Yammouneh palaeovegetation signal, where the transition

seems to be more progressive than in other eastern Mediter-

ranean records. In the southern Levant, the oxygen and car-

bon isotopic record in the Peqiin and Soreq caves suggest

an abrupt but later enrichment signal around ∼ 118 ka (Bar-

Matthews et al., 2003). This change was shifted to∼ 120.5 ka

(Grant et al., 2012) using a more refined U–Th chronology

(Fig. 7).

6.2.3 The glacial inception

After ∼ 120.3 ka, a more enriched δ18O profile indicates the

end of warm and wet conditions of the LIG. The onset of
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Figure 7. Left panel: Kanaan Cave δ18O and δ13C profiles compared to continental records in the Levant. From north to south of the

Levant: (a) Yammouneh AP %, north Lebanon (Gasse et al., 2015); (b) Kanaan carbon and oxygen isotopic profile (this study); (c) Peqiin

Cave (Bar-Matthews et al., 2003); (d) Soreq Cave (Grant et al., 2012); (e) Tzavoa Cave (Vaks et al., 2006); and (f) lake Samra palaeolevels

in the Dead Sea basin (Waldmann et al., 2009). Right panel: Kanaan Cave δ18O profile compared to global and regional records in the

eastern Mediterranean Basin: (g) summer insolation at 30◦ N and orbital eccentricity forcing (Berger and Loutre, 1991); (h) NGRIP-NEEM,

indicating the volume of the Arctic ice sheet (NGRIP Members, 2004; + NEEM community members, 2013); (i) eastern Mediterranean

δ18OG.ruber in core LC21 (Grant et al., 2012); (j) Mediterranean sapropel events (Ziegler et al., 2010) and the Nile flooding event (Scrivner

et al., 2004); and (l) EMS Mediterranean δ18OG.ruber in ODP Site 967 and in MD 70-41 site resampled at 1 kyr intervals (Emeis et al., 2003).

glacial conditions as indicated in several continental records

in the eastern Mediterranean (Fig. 7) shows gradual climate

deterioration into the glacial inception period before MIS 4.

The isotopic response of K1-2010 to the glacial inception is

recorded synchronously at ∼ 120 ka in both δ18O and δ13C

signals, but while the δ18O decreases rapidly along with a

shift to a moderate growth rate, especially in response to

the wet pulses during the S4 event, the δ13C shows a more

gradual evolution. This can be explained by the fact that

a rainfall- and mostly source-driven δ18O signal is rapidly

transmitted to K1-2010 speleothem, whereas the inertia and

gradual change in the δ13C signal reflect a long-term deterio-

ration of the soil and biopedological activity above the cave.

On a regional scale, the Yammouneh palaeovegetation signal

indicates expanded steppic vegetation cover after ∼ 120 ka

(Develle et al., 2011). In the southern Levant, a gradual δ13C

and δ18O enrichment, except for the wet pulses during the

S4 and S3 events, until the end of MIS 5 indicates a gen-

eral climate degradation that could be related to less rainfall

derived from the Mediterranean moisture source (Ayalon et

al., 2002; Bar-Matthews et al., 2003) or to changes in wind

circulation pattern (Kolodny et al., 2005; Lisker et al., 2010).

Further south in the Negev region, a different climatic regime

from the northern Levant is recorded from speleothems and

lacustrine records. Speleothem growth rates decreased af-

ter MIS 5c (Vaks et al., 2006), with less rainfall from the

Mediterranean Sea reaching Tzavoa Cave (northern Negev).

Speleothem records from caves located further south in the

Negev Desert (Vaks et al., 2010) along with the Mudawara

palaeolake records in southern Jordan showed a wet pulse

during MIS 5a, related more to rainfall originating from the

Indian monsoon (Petit-Maire et al., 2010). Moreover, Lake

Samra records in the DSB are less out of phase with Levan-

tine records further north than suggested for the last 20 kyr

(Cheng et al., 2015). The DSB records, recently investigated

with a higher chronological resolution (Neugebauer et al.,

2015) than previous studies (Waldmann et al., 2009), show

minor high levels during MIS 5c and 5a. These wet pulses

indicate though wet periods but with smaller amplitude than

the wet phase in the northern Levant. The climate picture of

the DSB during the glacial inception is related probably to

local factors influenced by the Judean rain shadow (Vaks et

al., 2006, 2013) and, together with other continental records

further south, invokes climatic variations driven by the mon-

soon system (Torfstein et al., 2015) and its boundary shifts
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(Parton et al., 2015; Bar-Mathews, 2014) or by the North At-

lantic and Mediterranean climates (Neugebauer et al., 2015).

7 Conclusions

A dated MIS 5 stalagmite record (129–84 ka) from Kanaan

Cave, Lebanon, demonstrates the potential of stalagmite

records for palaeoclimate reconstruction in the northern Lev-

ant. The K1-2010 model age coupled with growth rates and

isotopic data provide a more precise record of the climatic

changes that occurred during the last interglacial and on into

the glacial inception period.

The K1-2010 speleothem record indicate a very wet early

LIG and during the LIG optimum at the global scale, and is

in agreement with warm and humid conditions demonstrated

in other speleothem and lacustrine records from the Mediter-

ranean. The K1-2010 isotope record and growth rate curves

clearly demonstrate an important change from 126.3± 0.9

to 120.3 ka (interpolated). The change seems to be driven

mainly by a “source” effect, reflecting the δ18O Mediter-

ranean Sea surface water composition and the EM isotopic

increase at ∼ 126 ka during the S5 event. Other factors such

as the rainfall amount, the temperature or the wind trajecto-

ries might have contributed as a second-order factor to the

δ18O change from 126 to 120 ka. This change sets the on-

set of the regional climate deterioration following the peak

(early S5) of the last interglacial over the Levant region.

However, the climatic change as recorded in the K1-2010

isotopic record could be more gradual than the changes iden-

tified in the Soreq and Peqiin speleothem records.

After ∼ 120 ka, enriched oxygen and carbon profiles in

K1-2010 document the end of the LIG humid phase. The

change in isotopic composition from 122 to 120 ka is driven

by a reduction in rainfall originating from the Mediterranean

Sea, coupled with a long-term change in the δ18O compo-

sition of the EM surface waters. The onset of glacial incep-

tion conditions, as indicated in several continental records

in the Levant, is signified by a gradual climatic deteriora-

tion until the full glacial conditions of MIS 4. A short, wet

phase (∼ 103–100 ka) at the end of the S4 event is indi-

cated by increased water circulation into Kanaan Cave caus-

ing faster speleothem growth rates, sediment flushing, sub-

sidence, and speleothem tilting. The climatic scheme sug-

gested from K1-2010 isotopic profiles and growth rates is

in overall agreement with Yammouneh palaeolake records in

northern Lebanon, and with the Soreq and Peqiin speleothem

records. However, the K1-2010 record shows different ampli-

tude patterns with continental records located further south,

although it does not show a clear out-of-phase climate vari-

ability during MIS 5 as demonstrated for the last 20 000 years

by the Jeita speleothem record (Cheng et al., 2015).

The Supplement related to this article is available online

at doi:10.5194/cp-11-1785-2015-supplement.
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