342 research outputs found

    Decreased beta-cell mass in diabetes: significance, mechanisms and therapeutic implications

    Get PDF
    Increasing evidence indicates that decreased functional beta-cell mass is the hallmark of both Type 1 and Type 2 diabetes. This underlies the absolute or relative insulin insufficiency in both conditions. In this For Debate, we consider the possible mechanisms responsible for beta-cell death and impaired function and their relative contribution to insulin insufficiency in diabetes. Beta-cell apoptosis and impaired proliferation consequent to hyperglycaemia is one pathway that could be operating in all forms of diabetes. Autoimmunity and other routes to beta-cell death are also considered. Recognition of decreased functional beta-cell mass and its overlapping multifactorial aetiology in diabetic states, leads us to propose a unifying classification of diabete

    Non-muscle myosin IIA is involved in focal adhesion and actin remodelling controlling glucose-stimulated insulin secretion

    Get PDF
    Aims/hypothesis: Actin and focal adhesion (FA) remodelling are essential for glucose-stimulated insulin secretion (GSIS). Non-muscle myosin II (NM II) isoforms have been implicated in such remodelling in other cell types, and myosin light chain kinase (MLCK) and Rho-associated coiled-coil-containing kinase (ROCK) are upstream regulators of NM II, which is known to be involved in GSIS. The aim of this work was to elucidate the implication and regulation of NM IIA and IIB in beta cell actin and FA remodelling, granule trafficking and GSIS. Methods: Inhibitors of MLCK, ROCK and NM II were used to study NM II activity, and knockdown of NM IIA and IIB to determine isoform specificity, using sorted primary rat beta cells. Insulin was measured by radioimmunoassay. Protein phosphorylation and subcellular distribution were determined by western blot and confocal immunofluorescence. Dynamic changes were monitored by live cell imaging and total internal reflection fluorescence microscopy using MIN6B1 cells. Results: NM II and MLCK inhibition decreased GSIS, associated with shortening of peripheral actin stress fibres, and reduced numbers of FAs and insulin granules in close proximity to the basal membrane. By contrast, ROCK inhibition increased GSIS and caused disassembly of glucose-induced central actin stress fibres, resulting in large FAs without any effect on FA number. Only glucose-induced NM IIA reorganisation was blunted by MLCK inhibition. NM IIA knockdown decreased GSIS, levels of FA proteins and glucose-induced extracellular signal-regulated kinase 1/2 phosphorylation. Conclusions/interpretation: Our data indicate that MLCK-NM IIA may modulate translocation of secretory granules, resulting in enhanced insulin secretion through actin and FA remodelling, and regulation of FA protein level

    A new paradigm for improved co-ordination and efficacy of European biomedical research: taking diabetes as a model

    Get PDF
    Today, European biomedical and health-related research is insufficiently well funded and is fragmented, with no common vision, less-than-optimal sharing of resources, and inadequate support and training in clinical research. Improvements to the competitiveness of European biomedical research will depend on the creation of new infrastructures that must be dynamic and free of bureaucracy, involve all stakeholders and facilitate faster delivery of new discoveries from bench to bedside. Taking diabetes research as the model, a new paradigm for European biomedical research is presented, which offers improved co-ordination and common resources that will benefit both academic and industrial clinical research. This includes the creation of a European Council for Health Research, first proposed by the Alliance for Biomedical Research in Europe, which will bring together and consult with all health stakeholders to develop strategic and multidisciplinary research programmes addressing the full innovation cycle. A European Platform for Clinical Research in Diabetes is proposed by the Alliance for European Diabetes Research (EURADIA) in response to the special challenges and opportunities presented by research across the European region, with the need for common standards and shared expertise and dat

    Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells

    Get PDF
    Aims/hypothesis: Mutations in genes encoding HNF-4α, HNF-1α and IPF-1/Pdx-1 are associated with, respectively, MODY subtypes-1, -3 and -4. Impaired glucose-stimulated insulin secretion is the common primary defect of these monogenic forms of diabetes. A regulatory circuit between these three transcription factors has also been suggested. We aimed to explore how Pdx-1 regulates beta cell function and gene expression patterns. Methods: We studied two previously established INS-1 stable cell lines permitting inducible expression of, respectively, Pdx-1 and its dominant-negative mutant. We used HPLC for insulin processing, adenovirally encoded aequorin for cytosolic [Ca2+], and transient transfection of human growth hormone or patch-clamp capacitance recordings to monitor exocytosis. Results: Induction of DN-Pdx-1 resulted in defective glucose-stimulated and K+-depolarisation-induced insulin secretion in INS-1 cells, while overexpression of Pdx-1 had no effect. We found that DN-Pdx-1 caused down-regulation of fibroblast growth factor receptor 1 (FGFR1), and consequently prohormone convertases (PC-1/3 and -2). As a result, DN-Pdx-1 severely impaired proinsulin processing. In addition, induction of Pdx-1 suppressed the expression of glucagon-like peptide 1 receptor (GLP-1R), which resulted in marked reduction of both basal and GLP-1 agonist exendin-4-stimulated cellular cAMP levels. Induction of DN-Pdx-1 did not affect glucokinase activity, glycolysis, mitochondrial metabolism or ATP generation. The K+-induced cytosolic [Ca2+] rise and Ca2+-evoked exocytosis (membrane capacitance) were not abrogated. Conclusions/interpretation: The severely impaired proinsulin processing combined with decreased GLP-1R expression and cellular cAMP content, rather than metabolic defects or altered exocytosis, may contribute to the beta cell dysfunction induced by Pdx-1 deficienc

    Chronic central neuropeptide Y infusion in normal rats: status of the hypothalamo-pituitary-adrenal axis, and vagal mediation of hyperinsulinaemia

    Get PDF
    Summary: Neuropeptide Y in the hypothalamus is a potent physiological stimulator of feeding, and may contribute to the characteristic metabolic defects of obesity when hypothalamic levels remain chronically elevated. Since corticosterone and insulin are important regulators of fuel metabolism, the longitudinal effects of chronic (6 days) intracerebroventricular infusion of neuropeptide Y in normal rats on the hypothalamo-pituitary-adrenal axis and on insulin secretion were studied. Neuropeptide Y-infused rats were either allowed to eat ad libitum, or were pair-fed with normophagic control rats. Neuropeptide Y increased the basal plasma concentrations of adrenocorticotropic hormone and corticosterone during the first 2 days of its intracerebroventricular infusion and increased cold stress-induced plasma adrenocorticotropic hormone concentrations. After 4-6 days of central neuropeptide Y infusion, however, basal plasma adrenocorticotropic hormone and corticosterone concentrations were no different from control values (except in ad libitum-fed rats in which corticosteronaemia remained elevated), they were unaffected by the stress of cold exposure, and the hypothalamic content of corticotropin-releasing factor immunoreactivity was significantly decreased. A state of hyperinsulinaemia was present throughout the 6 days of intracerebroventricular neuropeptide Y infusion, being more marked in the ad libitum-fed than in the pair-fed group. The proportions of insulin, proinsulin, and conversion intermediates in plasma and pancreas were unchanged. Hyperinsulinaemia of the pair-fed neuropeptide Y-infused rats was accompanied by muscle insulin resistance and white adipose tissue insulin hyperresponsiveness, as assessed by the in vivo uptake of 2-deoxyglucose. Finally, bilateral subdiaphragmatic vagotomy prevented both the basal and the marked glucose-induced hyperinsulinaemia of animals chronically infused with neuropeptide Y, demonstrating that central neuropeptide Y-induced hyperinsulinaemia is mediated by the parasympathetic nervous syste
    • …
    corecore