25 research outputs found

    1H, 13C and 15N resonance assignments of the Calmodulin-Munc13-1 peptide complex

    Get PDF
    Ca2+-Calmodulin binding to the variable N-terminal region of the diacylglycerol/phorbol ester-binding UNC13/Munc13 family of proteins modulates the short-term synaptic plasticity characteristics in neurons. Here, we report the sequential backbone and side chain resonance assignment of the Ca2+-Calmodulin/Munc13-1458–492 peptide complex at pH 6.8 and 35°C (BMRB No. 15470)

    Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    Get PDF
    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large residual dipolar couplings and pseudocontact shifts that could be measured easily and agreed very well with the protein structure. We show that Cys-Ph-TAHA can be used to label large proteins that are biochemically challenging such as the Lac repressor in a 90 kDa ternary complex with DNA and inducer

    Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein–protein complex structure determination

    Get PDF
    Pseudo contact shifts (PCSs) induced by paramagnetic lanthanide ions fixed in a protein frame provide long-range distance and angular information, and are valuable for the structure determination of protein–protein and protein–ligand complexes. We have been developing a lanthanide-binding peptide tag (hereafter LBT) anchored at two points via a peptide bond and a disulfide bond to the target proteins. However, the magnetic susceptibility tensor displays symmetry, which can cause multiple degenerated solutions in a structure calculation based solely on PCSs. Here we show a convenient method for resolving this degeneracy by changing the spacer length between the LBT and target protein. We applied this approach to PCS-based rigid body docking between the FKBP12-rapamycin complex and the mTOR FRB domain, and demonstrated that degeneracy could be resolved using the PCS restraints obtained from two-point anchored LBT with two different spacer lengths. The present strategy will markedly increase the usefulness of two-point anchored LBT for protein complex structure determination

    Development and application of NMR-methods for structural investigations of small molecules and proteins

    No full text
    corecore