256 research outputs found

    Classical {\it vs.}\ Landau-Ginzburg Geometry of Compactification

    Full text link
    We consider superstring compactifications where both the classical description, in terms of a Calabi-Yau manifold, and also the quantum theory is known in terms of a Landau-Ginzburg orbifold model. In particular, we study (smooth) Calabi-Yau examples in which there are obstructions to parametrizing all of the complex structure cohomology by polynomial deformations thus requiring the analysis based on exact and spectral sequences. General arguments ensure that the Landau-Ginzburg chiral ring copes with such a situation by having a nontrivial contribution from twisted sectors. Beyond the expected final agreement between the mathematical and physical approaches, we find a direct correspondence between the analysis of each, thus giving a more complete mathematical understanding of twisted sectors. Furthermore, this approach shows that physical reasoning based upon spectral flow arguments for determining the spectrum of Landau-Ginzburg orbifold models finds direct mathematical justification in Koszul complex calculations and also that careful point- field analysis continues to recover suprisingly much of the stringy features.Comment: 14

    On Periods for String Compactifications

    Full text link
    Motivated by recent developments in the computation of periods for string compactifications with c=9c=9, we develop a complementary method which also produces a convenient basis for related calculations. The models are realized as Calabi--Yau hypersurfaces in weighted projective spaces of dimension four or as Landau-Ginzburg vacua. The calculation reproduces known results and also allows a treatment of Landau--Ginzburg orbifolds with more than five fields.Comment: HUPAPP-93/6, IASSNS-HEP-93/80, UTTG-27-93. 21 pages,harvma

    Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior

    Full text link
    In this paper a recently developed projector-based renormalization method (PRM) for many-particle Hamiltonians is applied to the periodic Anderson model (PAM) with the aim to describe heavy Fermion behavior. In this method high-energetic excitation operators instead of high energetic states are eliminated. We arrive at an effective Hamiltonian for a quasi-free system which consists of two non-interacting heavy-quasiparticle bands. The resulting renormalization equations for the parameters of the Hamiltonian are valid for large as well as small degeneracy νf\nu_f of the angular momentum. An expansion in 1/νf1/\nu_f is avoided. Within an additional approximation which adapts the idea of a fixed renormalized \textit{f} level ϵ~f\tilde{\epsilon}_{f}, we obtain coupled equations for ϵ~f\tilde{\epsilon}_{f} and the averaged \textit{f} occupation . These equations resemble to a certain extent those of the usual slave boson mean-field (SB) treatment. In particular, for large νf\nu_f the results for the PRM and the SB approach agree perfectly whereas considerable differences are found for small νf\nu_f.Comment: 26 pages, 5 figures included, discussion of the DOS added in v2, accepted for publication in Phys. Rev.

    Optical conductivity of wet DNA

    Full text link
    Motivated by recent experiments we have studied the optical conductivity of DNA in its natural environment containing water molecules and counter ions. Our density functional theory calculations (using SIESTA) for four base pair B-DNA with order 250 surrounding water molecules suggest a thermally activated doping of the DNA by water states which generically leads to an electronic contribution to low-frequency absorption. The main contributions to the doping result from water near DNA ends, breaks, or nicks and are thus potentially associated with temporal or structural defects in the DNA.Comment: 4 pages, 4 figures included, final version, accepted for publication in Phys. Rev. Let

    On the Instanton Contributions to the Masses and Couplings of E6E_6 Singlets

    Get PDF
    We consider the gauge neutral matter in the low--energy effective action for string theory compactification on a \cym\ with (2,2)(2,2) world--sheet supersymmetry. At the classical level these states (the \sing's of E6E_6) correspond to the cohomology group H^1(\M,{\rm End}\>T). We examine the first order contribution of instantons to the mass matrix of these particles. In principle, these corrections depend on the \K\ parameters tit_i through factors of the form e^{2\p i t_i} and also depend on the complex structure parameters. For simplicity we consider in greatest detail the quintic threefold \cp4[5]. It follows on general grounds that the total mass is often, and perhaps always, zero. The contribution of individual instantons is however nonzero and the contribution of a given instanton may develop poles associated with instantons coalescing for certain values of the complex structure. This can happen when the underlying \cym\ is smooth. Hence these poles must cancel between the coalescing instantons in order that the superpotential be finite. We examine also the \Y\ couplings involving neutral matter \ysing\ and neutral and charged fields \ymix, which have been little investigated even though they are of phenomenological interest. We study the general conditions under which these couplings vanish classically. We also calculate the first--order world--sheet instanton correction to these couplings and argue that these also vanish.Comment: 40 pages, plain TeX with epsf, one uuencoded figur

    PaaSword: A Holistic Data Privacy and Security by Design Framework for Cloud Services

    Get PDF
    Enterprises increasingly recognize the compelling economic and operational benefits from virtualizing and pooling IT resources in the cloud. Nevertheless, the significant and valuable transformation of organizations that adopt cloud computing is accompanied by a number of security threats that should be considered. In this position paper, we outline significant security challenges presented when migrating to a cloud environment and propose PaaSword - a novel holistic framework that aspires to alleviate these challenges. Specifically, this proposed framework involves a context-aware security model, the necessary policies enforcement mechanism along with a physical distribution, encryption and query middleware

    Dominant particle-hole contributions to the phonon dynamics in the spinless one-dimensional Holstein model

    Full text link
    In the spinless Holstein model at half-filling the coupling of electrons to phonons is responsible for a phase transition from a metallic state at small coupling to a Peierls distorted insulated state when the electron-phonon coupling exceeds a critical value. For the adiabatic case of small phonon frequencies, the transition is accompanied by a phonon softening at the Brillouin zone boundary whereas a hardening of the phonon mode occurs in the anti-adiabatic case. The phonon dynamics studied in this letter do not only reveal the expected renormalization of the phonon modes but also show remarkable additional contributions due to electronic particle-hole excitations.Comment: 7 pages, 4 figures and 1 table included; v2: discussion of Luttinger liquid parameters adde

    Worldsheet Matter Superfields on Half-Shell

    Full text link
    In this paper we discuss some of the effects of using "unidexterous" worldsheet superfields, which satisfy worldsheet differential constraints and so are partly on-shell, i.e., on half-shell. Most notably, this results in a stratification of the field space that reminds of "brane-world" geometries. Linear dependence on such superfields provides a worldsheet generalization of the super-Zeeman effect. In turn, non-linear dependence yields additional left-right asymmetric dynamical constraints on the propagating fields, again in a stratified fashion.Comment: 15 pages, 2 figures; minor algebraic correction
    corecore