235 research outputs found

    Classical and quantum massive cosmology for the open FRW universe

    Full text link
    In an open Friedmann-Robertson-Walker (FRW) space background, we study the classical and quantum cosmological models in the framework of the recently proposed nonlinear massive gravity theory. Although the constraints which are present in this theory prevent it from admitting the flat and closed FRW models as its cosmological solutions, for the open FRW universe, it is not the case. We have shown that, either in the absence of matter or in the presence of a perfect fluid, the classical field equations of such a theory adopt physical solutions for the open FRW model, in which the mass term shows itself as a cosmological constant. These classical solutions consist of two distinguishable branches: One is a contacting universe which tends to a future singularity with zero size, while another is an expanding universe having a past singularity from which it begins its evolution. A classically forbidden region separates these two branches from each other. We then employ the familiar canonical quantization procedure in the given cosmological setting to find the cosmological wave functions. We use the resulting wave function to investigate the possibility of the avoidance of classical singularities due to quantum effects. It is shown that the quantum expectation values of the scale factor, although they have either contracting or expanding phases like their classical counterparts, are not disconnected from each other. Indeed, the classically forbidden region may be replaced by a bouncing period in which the scale factor bounces from the contraction to its expansion eras. Using the Bohmian approach of quantum mechanics, we also compute the Bohmian trajectory and the quantum potential related to the system, which their analysis shows are the direct effects of the mass term on the dynamics of the universe.Comment: 18 pages, 7 figures, typos corrected, refs. adde

    Time-Symmetrization and Isotropization of Stiff-Fluid Kantowski-Sachs Universes

    Get PDF
    It is shown that growing-entropy stiff-fluid Kantowski-Sachs universes become time-symmetric (if they start with time-asymmetric phase) and isotropize. Isotropization happens without any inflationary era during the evolution since there is no cosmological term here. It seems that this approach is an alternative to inflation since the universe gets bigger and bigger approaching 'flatness'.Comment: 9 pages, no figure

    Entropy of gravitationally collapsing matter in FRW universe models

    Full text link
    We look at a gas of dust and investigate how its entropy evolves with time under a spherically symmetric gravitational collapse. We treat the problem perturbatively and find that the classical thermodynamic entropy does actually increase to first order when one allows for gravitational potential energy to be transferred to thermal energy during the collapse. Thus, in this situation there is no need to resort to the introduction of an intrinsic gravitational entropy in order to satisfy the second law of thermodynamics.Comment: 9 pages, 4 figures. Major changes from previous version. We consider only thermodynamic entropy in this version. Published in PR

    On the twin paradox in static spacetimes: I. Schwarzschild metric

    Get PDF
    Motivated by a conjecture put forward by Abramowicz and Bajtlik we reconsider the twin paradox in static spacetimes. According to a well known theorem in Lorentzian geometry the longest timelike worldline between two given points is the unique geodesic line without points conjugate to the initial point on the segment joining the two points. We calculate the proper times for static twins, for twins moving on a circular orbit (if it is a geodesic) around a centre of symmetry and for twins travelling on outgoing and ingoing radial timelike geodesics. We show that the twins on the radial geodesic worldlines are always the oldest ones and we explicitly find the conjugate points (if they exist) outside the relevant segments. As it is of its own mathematical interest, we find general Jacobi vector fields on the geodesic lines under consideration. In the first part of the work we investigate Schwarzschild geometry.Comment: 18 pages, paper accepted for publication in Gen. Rel. Gra

    Randall-Sundrum Model in the Presence of a Brane Bulk Viscosity

    Full text link
    The presence of a bulk viscosity for the cosmic fluid on a single Randall-Sundrum brane is considered. The spatial curvature is assumed to be zero. The five-dimensional Friedmann equation is derived, together with the energy conservation equation for the viscous fluid. These governing equations are solved for some special cases: (i) in the low-energy limit when the matter energy density is small compared with brane tension; (ii) for a matter-dominated universe, and (iii) for a radiation-dominated universe. Rough numerical estimates, for the extreme case when the universe is at its Planck time, indicate that the viscous effect can be significant.Comment: 18 pages, RevTeX4, no figures. Discussion in Sec. III expanded; new references. To appear in Phys. Rev.

    Magnetohydrodynamics in the Inflationary Universe

    Get PDF
    Magnetohydrodynamic (MHD) waves are analysed in the early Universe, in the inflationary era, assuming the Universe to be filled with a nonviscous fluid of the Zel'dovich type (p=ρp=\rho) in a metric of the de Sitter form. A spatially uniform, time dependent, magnetic field B0{\bf B_0} is assumed to be present. The Einstein equations are first solved to give the time dependence of the scale factor, assuming that the matter density, but not the magnetic field, contribute as source terms. The various modes are thereafter analysed; they turn out to be essentially of the same kind as those encountered in conventional nongravitational MHD, although the longitudinal magnetosonic wave is not interpretable as a physical energy-transporting wave as the group velocity becomes superluminal. We determine the phase speed of the various modes; they turn out to be scale factor independent. The Alfv\'{e}n velocity of the transverse magnetohydrodynamic wave becomes extremely small in the inflationary era, showing that the wave is in practice 'frozen in'.Comment: 19 pages, LaTeX, no figures. Minor additions to the Summary section and Acknowledgments section. Two new references. Version to appear in Phys. Rev.

    Gravitational Entropy and Quantum Cosmology

    Get PDF
    We investigate the evolution of different measures of ``Gravitational Entropy'' in Bianchi type I and Lema\^itre-Tolman universe models. A new quantity behaving in accordance with the second law of thermodynamics is introduced. We then go on and investigate whether a quantum calculation of initial conditions for the universe based upon the Wheeler-DeWitt equation supports Penrose's Weyl Curvature Conjecture, according to which the Ricci part of the curvature dominates over the Weyl part at the initial singularity of the universe. The theory is applied to the Bianchi type I universe models with dust and a cosmological constant and to the Lema\^itre-Tolman universe models. We investigate two different versions of the conjecture. First we investigate a local version which fails to support the conjecture. Thereafter we construct a non-local entity which shows more promising behaviour concerning the conjecture.Comment: 20 pages, 7 ps figure

    Bianchi type I cyclic cosmology from Lie-algebraically deformed phase space

    Full text link
    We study the effects of noncommutativity, in the form of a Lie-algebraically deformed Poisson commutation relations, on the evolution of a Bianchi type I cosmological model with a positive cosmological constant. The phase space variables turn out to correspond to the scale factors of this model in xx, yy and zz directions. According to the conditions that the structure constants (deformation parameters) should satisfy, we argue that there are two types of noncommutative phase space with Lie-algebraic structure. The exact classical solutions in commutative and type I noncommutative cases are presented. In the framework of this type of deformed phase space, we investigate the possibility of building a Bianchi I model with cyclic scale factors in which the size of the universe in each direction experiences an endless sequence of contractions and re-expansions. We also obtain some approximate solutions for the type II noncommutative structure by numerical methods and show that the cyclic behavior is repeated as well. These results are compared with the standard commutative case, and similarities and differences of these solutions are discussed.Comment: 13 pages, to appear in PRD, typos corrected, Refs. adde

    Vacuum polarization on the spinning circle

    Get PDF
    Vacuum polarization of a massive scalar field in the background of a two-dimensional version of a spinning cosmic string is investigated. It is shown that when the `radius of the universe' is such that spacetime is globally hyperbolic the vacuum fluctuations are well behaved, diverging though on the `chronology horizon'. Naive use of the formulae when spacetime is nonglobally hyperbolic leads to unphysical results. It is also pointed out that the set of normal modes used previously in the literature to address the problem gives rise to two-point functions which do not have a Hadamard form, and therefore are not physically acceptable. Such normal modes correspond to a locally (but not globally) Minkowski time, which appears to be at first sight a natural choice of time to implement quantization.Comment: 3 pages, no figures, REVTeX4, published versio

    The Relative Space: Space Measurements on a Rotating Platform

    Full text link
    We introduce here the concept of relative space, an extended 3-space which is recognized as the only space having an operational meaning in the study of the space geometry of a rotating disk. Accordingly, we illustrate how space measurements are performed in the relative space, and we show that an old-aged puzzling problem, that is the Ehrenfest's paradox, is explained in this purely relativistic context. Furthermore, we illustrate the kinematical origin of the tangential dilation which is responsible for the solution of the Ehrenfest's paradox.Comment: 14 pages, 2 EPS figures, LaTeX, to appear in the European Journal of Physic
    corecore