Magnetohydrodynamic (MHD) waves are analysed in the early Universe, in the
inflationary era, assuming the Universe to be filled with a nonviscous fluid of
the Zel'dovich type (p=ρ) in a metric of the de Sitter form. A spatially
uniform, time dependent, magnetic field B0 is assumed to be present.
The Einstein equations are first solved to give the time dependence of the
scale factor, assuming that the matter density, but not the magnetic field,
contribute as source terms. The various modes are thereafter analysed; they
turn out to be essentially of the same kind as those encountered in
conventional nongravitational MHD, although the longitudinal magnetosonic wave
is not interpretable as a physical energy-transporting wave as the group
velocity becomes superluminal. We determine the phase speed of the various
modes; they turn out to be scale factor independent. The Alfv\'{e}n velocity of
the transverse magnetohydrodynamic wave becomes extremely small in the
inflationary era, showing that the wave is in practice 'frozen in'.Comment: 19 pages, LaTeX, no figures. Minor additions to the Summary section
and Acknowledgments section. Two new references. Version to appear in Phys.
Rev.