11 research outputs found
Challenges in the safety-security co-assurance of collaborative industrial robots
The coordinated assurance of interrelated critical properties, such as system safety and cyber-security, is one of the toughest challenges in critical systems engineering. In this chapter, we summarise approaches to the coordinated assurance of safety and security. Then, we highlight the state of the art and recent challenges in human-robot collaboration in manufacturing both from a safety and security perspective. We conclude with a list of procedural and technological issues to be tackled in the coordinated assurance of collaborative industrial robots
RiskStructures : A Design Algebra for Risk-Aware Machines
Machines, such as mobile robots and delivery drones, incorporate controllers responsible for a task while handling risk (e.g. anticipating and mitigating hazards; and preventing and alleviating accidents). We refer to machines with this capability as risk-aware machines. Risk awareness includes robustness and resilience, and complicates monitoring (i.e., introspection, sensing, prediction), decision making, and control. From an engineering perspective, risk awareness adds a range of dependability requirements to system assurance. Such assurance mandates a correct-by-construction approach to controller design, based on mathematical theory. We introduce RiskStructures, an algebraic framework for risk modelling intended to support the design of safety controllers for risk-aware machines. Using the concept of a risk factor as a modelling primitive, this framework provides facilities to construct, examine, and assure these controllers. We prove desirable algebraic properties of these facilities, and demonstrate their applicability by using them to specify key aspects of safety controllers for risk-aware automated driving and collaborative robots
Chemical analysis of pottery demonstrates prehistoric origin for high-altitude alpine dairying
The European high Alps are internationally renowned for their dairy produce, which are of huge cultural and economic significance to the region. Although the recent history of alpine dairying has been well studied, virtually nothing is known regarding the origins of this practice. This is due to poor preservation of high altitude archaeological sites and the ephemeral nature of transhumance economic practices. Archaeologists have suggested that stone structures that appear around 3,000 years ago are associated with more intense seasonal occupation of the high Alps and perhaps the establishment of new economic strategies. Here, we report on organic residue analysis of small fragments of pottery sherds that are occasionally preserved both at these sites and earlier prehistoric rock-shelters. Based mainly on isotopic criteria, dairy lipids could only be identified on ceramics from the stone structures, which date to the Iron Age (ca. 3,000 - 2,500 BP), providing the earliest evidence of this practice in the high Alps. Dairy production in such a marginal environment implies a high degree of risk even by todayâs standards. We postulate that this practice was driven by population increase and climate deterioration that put pressure on lowland agropastoral systems and the establishment of more extensive trade networks, leading to greater demand for highly nutritious and transportable dairy products
Model-based hazard and impact analysis
Hazard and impact analysis is an indispensable task during the specification and development of safety-critical technical systems, and particularly of their software-intensive control parts. There is a lack of methods supporting an effective (reusable, automated) and integrated (cross-disciplinary) way to carry out such analyses. This report was motivated by an industrial project whose goal was to survey and propose methods and models for documentation and analysis of a system and its environment to support hazard and impact analysis as an important task of safety engineering and system development. We present and investigate three perspectives of how to properly (i) encode safety-relevant domain knowledge for better reuse and automation, (ii) identify and assess all relevant hazards, as well as (iii) pre-process this information and make it easily accessible for reuse in other safety and systems engineering activities and, moreover, in similar engineering projects. The first perspective focuses on the transition from informal to a formal, model-based representation of knowledge about hazards and system requirements. The second perspective provides a methodology to identify and treat hazards based on a state-machine model of the considered system. The third perspective shows a tool-supported procedure for modeling faulty behaviors of both, physical and software components in a qualitative way and for automatically determining their impact based on the structural description of the physical and computational/software parts of the system and a model of the environment. All perspectives are shown in their characteristics and capabilities by means of a case study on a drive train in the commercial road vehicle domain