251 research outputs found

    FM/CW radar system

    Get PDF
    An FM/CW radar system is presented with improved noise discrimination in which the received signal is multiplied by a sample of the transmitted signal, and the product signal is employed to deflect a laser beam as a function of frequency. The position of the beam is thus indicative of a discrete frequency, and it is detected by the frequency encoded positions of an array of photodiodes. The outputs of the photodiodes are scanned, then threshold detected, and used to obtain the range and velocity of a target

    Real-time video correlator

    Get PDF
    Device provides two-dimensional correlation of video data. Operation is reliable, accurate, and predictable

    The detached dust shells of AQ And, U Ant, and TT Cyg

    Full text link
    Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the new data sets, physical sizes, expansion timescales, dust temperatures, and more are deduced. A comparison with existing molecular CO material shows a high degree of correlation for TT Cyg and U Ant but a few distinct differences with other observables are also found.Comment: Letter accepted for publication on the A&A Herschel Special Issu

    X Her and TX Psc: Two cases of ISM interaction with stellar winds observed by Herschel

    Full text link
    The asymptotic giant branch (AGB) stars X Her and TX Psc have been imaged at 70 and 160 microns with the PACS instrument onboard the Herschel satellite, as part of the large MESS (Mass loss of Evolved StarS) Guaranteed Time Key Program. The images reveal an axisymmetric extended structure with its axis oriented along the space motion of the stars. This extended structure is very likely to be shaped by the interaction of the wind ejected by the AGB star with the surrounding interstellar medium (ISM). As predicted by numerical simulations, the detailed structure of the wind-ISM interface depends upon the relative velocity between star+wind and the ISM, which is large for these two stars (108 and 55 km/s for X Her and TX Psc, respectively). In both cases, there is a compact blob upstream whose origin is not fully elucidated, but that could be the signature of some instability in the wind-ISM shock. Deconvolved images of X Her and TX Psc reveal several discrete structures along the outermost filaments, which could be Kelvin-Helmholtz vortices. Finally, TX Psc is surrounded by an almost circular ring (the signature of the termination shock?) that contrasts with the outer, more structured filaments. A similar inner circular structure seems to be present in X Her as well, albeit less clearly.Comment: 11 pages, Astronomy & Astrophysics, in pres
    • …
    corecore