1,382 research outputs found

    Astronomical seeing and ground-layer turbulence in the Canadian High Arctic

    Full text link
    We report results of a two-year campaign of measurements, during arctic winter darkness, of optical turbulence in the atmospheric boundary-layer above the Polar Environment Atmospheric Laboratory in northern Ellesmere Island (latitude +80 deg N). The data reveal that the ground-layer turbulence in the Arctic is often quite weak, even at the comparatively-low 610 m altitude of this site. The median and 25th percentile ground-layer seeing, at a height of 20 m, are found to be 0.57 and 0.25 arcsec, respectively. When combined with a free-atmosphere component of 0.30 arcsec, the median and 25th percentile total seeing for this height is 0.68 and 0.42 arcsec respectively. The median total seeing from a height of 7 m is estimated to be 0.81 arcsec. These values are comparable to those found at the best high-altitude astronomical sites

    Arbitrary-order Hilbert spectral analysis for time series possessing scaling statistics: a comparison study with detrended fluctuation analysis and wavelet leaders

    Full text link
    In this paper we present an extended version of Hilbert-Huang transform, namely arbitrary-order Hilbert spectral analysis, to characterize the scale-invariant properties of a time series directly in an amplitude-frequency space. We first show numerically that due to a nonlinear distortion, traditional methods require high-order harmonic components to represent nonlinear processes, except for the Hilbert-based method. This will lead to an artificial energy flux from the low-frequency (large scale) to the high-frequency (small scale) part. Thus the power law, if it exists, is contaminated. We then compare the Hilbert method with structure functions (SF), detrended fluctuation analysis (DFA), and wavelet leader (WL) by analyzing fractional Brownian motion and synthesized multifractal time series. For the former simulation, we find that all methods provide comparable results. For the latter simulation, we perform simulations with an intermittent parameter {\mu} = 0.15. We find that the SF underestimates scaling exponent when q > 3. The Hilbert method provides a slight underestimation when q > 5. However, both DFA and WL overestimate the scaling exponents when q > 5. It seems that Hilbert and DFA methods provide better singularity spectra than SF and WL. We finally apply all methods to a passive scalar (temperature) data obtained from a jet experiment with a Taylor's microscale Reynolds number Relambda \simeq 250. Due to the presence of strong ramp-cliff structures, the SF fails to detect the power law behavior. For the traditional method, the ramp-cliff structure causes a serious artificial energy flux from the low-frequency (large scale) to the high-frequency (small scale) part. Thus DFA and WL underestimate the scaling exponents. However, the Hilbert method provides scaling exponents {\xi}{\theta}(q) quite close to the one for longitudinal velocity.Comment: 13 pages, 10 figure

    A multi-wavelength view on the dusty Wolf-Rayet star WR 48a

    Get PDF
    We present results from the first attempts to derive various physical characteristics of the dusty Wolf-Rayet star WR 48a based on a multi-wavelength view of its observational properties. This is done on the basis of new optical and near-infrared spectral observations and on data from various archives in the optical, radio and X-rays. The optical spectrum of WR 48a is acceptably well represented by a sum of two spectra: of a WR star of the WC8 type and of a WR star of the WN8h type. The strength of the interstellar absorption features in the optical spectra of WR 48a and the near-by stars D2-3 and D2-7 (both members of the open cluster Danks 2) indicates that WR 48a is located at a distance of ~4 kpc from us. WR 48a is very likely a thermal radio source and for such a case and smooth (no clumps) wind its radio emission suggests a relatively high mass-loss rate of this dusty WR star (dM/dt = a few x 10^(-4) solar masses per year). Long timescale (years) variability of WR 48a is established in the optical, radio and X-rays. Colliding stellar winds likely play a very important role in the physics of this object. However, some LBV-like (luminous blue variable) activity could not be excluded as well.Comment: Accepted for publication in MNRAS; 16 pages, 16 figures, 6 table

    Spatially-Resolved Spectra of the "Teacup" AGN: Tracing the History of a Dying Quasar

    Get PDF
    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing Extended Emission-Line Regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup Active Galactic Nucleus (AGN), nicknamed for its EELR, which has a handle like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze physical conditions of this galaxy with long-slit ground based spectroscopy from Lowell, Lick, and KPNO observatories. With the Lowell 1.8m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] 6716/6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 years, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long time scale variability.Comment: 38 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Simulations of Spinodal Nucleation in Systems with Elastic Interactions

    Full text link
    Systems with long-range interactions quenched into a metastable state near the pseudospinodal exhibit nucleation that is qualitatively different than the classical nucleation observed near the coexistence curve. We have observed nucleation droplets in our Langevin simulations of a two-dimensional model of martensitic transformations and have determined that the structure of the nucleating droplet differs from the stable martensite structure. Our results, together with experimental measurements of the phonon dispersion curve, allow us to predict the nature of the droplet. These results have implications for nucleation in many solid-solid transitions and the structure of the final state
    • …
    corecore