1,856 research outputs found

    The StarScan plate measuring machine: overview and calibrations

    Full text link
    The StarScan machine at the U.S. Naval Observatory (USNO) completed measuring photographic astrograph plates to allow determination of proper motions for the USNO CCD Astrograph Catalog (UCAC) program. All applicable 1940 AGK2 plates, about 2200 Hamburg Zone Astrograph plates, 900 Black Birch (USNO Twin Astrograph) plates, and 300 Lick Astrograph plates have been measured. StarScan comprises of a CCD camera, telecentric lens, air-bearing granite table, stepper motor screws, and Heidenhain scales to operate in a step-stare mode. The repeatability of StarScan measures is about 0.2 micrometer. The CCD mapping as well as the global table coordinate system has been calibrated using a special dot calibration plate and the overall accuracy of StarScan x,y data is derived to be 0.5 micrometer. Application to real photographic plate data shows that position information of at least 0.65 micrometer accuracy can be extracted from course grain 103a-type emulsion astrometric plates. Transformations between "direct" and "reverse" measures of fine grain emulsion plate measures are obtained on the 0.3 micrometer level per well exposed stellar image and coordinate, which is at the limit of the StarScan machine.Comment: 24 pages, 8 figures, accepted for PAS

    Real time response on dS_3: the Topological AdS Black Hole and the Bubble

    Full text link
    We study real time correlators in strongly coupled N=4 supersymmetric Yang-Mills theory on dS_3 x S^1, with antiperiodic boundary conditions for fermions on the circle. When the circle radius is larger than a critical value, the dual geometry is the so-called "topological AdS_5 black hole". Applying the Son- Starinets recipe in this background we compute retarded glueball propagators which exhibit an infinite set of poles yielding the quasinormal frequencies of the topological black hole. The imaginary parts of the propagators exhibit thermal effects associated with the Gibbons-Hawking temperature due to the cosmological horizon of the de Sitter boundary. We also obtain R-current correlators and find that after accounting for a small subtlety, the Son-Starinets prescription yields the retarded Green's functions. The correlators do not display diffusive behaviour at late times. Below the critical value of the circle radius, the topological black hole decays to the AdS_5 "bubble of nothing". Using a high frequency WKB approximation, we show that glueball correlators in this phase exhibit poles on the real axis. The tunnelling from the black hole to the bubble is interpreted as a hadronization transition.Comment: 52 pages, 11 figures, typos corrected, references adde

    The Feedback-Regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies

    Get PDF
    We present an analysis of the growth of black holes through accretion and bulges through star formation in 33 galaxies at the centers of cooling flows. Most of these systems show evidence of cavities in the intracluster medium (ICM) inflated by radio jets emanating from their active galactic nuclei (AGN). We present a new and extensive analysis of X-ray cavities in these systems. We find that AGN are energetically able to balance radiative losses (cooling) from the ICM in more than half of our sample. Using a subsample of 17 systems, we examine the relationship between cooling and star formation. We find that the star formation rates are approaching or are comparable to X-ray and far UV limits on the rates of gas condensation onto the central galaxy. The remaining radiative losses could be offset by AGN feedback. The vast gulf between radiative losses and the sink of cooling material, which has been the primary objection to cooling flows, has narrowed and, in some cases, is no longer a serious issue. Using the cavity (jet) powers, we place strong lower limits on the rate of growth of supermassive black holes in central galaxies, and we find that they are growing at an average rate of ~ 0.1 solar masses per year, with some systems growing as quickly as ~ 1 solar mass per year. We find a trend between bulge growth (star formation) and black hole growth that is approximately in accordance with the slope of the local (Magorrian) relation between black hole and bulge mass. However, the large scatter in the trend suggests that bulges and black holes do not always grow in lock step. (Abridged)Comment: 17 pages, 6 figures, accepted to ApJ. Minor changes to text and figure

    First LOFAR results on galaxy clusters

    Full text link
    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. The role played by this non-thermal intracluster component on the thermodynamical evolution of galaxy clusters is debated, with important implications for cosmological and astrophysical studies of the largest gravitationally bound structures of the Universe. The low surface brightness and steep spectra of diffuse cluster radio sources make them more easily detectable at low-frequencies. LOFAR is the first instrument able to detect diffuse radio emission in hundreds of massive galaxy clusters up to their formation epoch. We present the first observations of clusters imaged by LOFAR and the huge perspectives opened by this instrument for non-thermal cluster studies.Comment: Proceedings of the 2012 week of the French Society of Astronomy and Astrophysics (SF2A) held in Nice, June 5th-8t
    • …
    corecore