4,802 research outputs found
The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System
We describe the layout and unique features of the focal plane system for
MIRI. We begin with the detector array and its readout integrated circuit
(combining the amplifier unit cells and the multiplexer), the electronics, and
the steps by which the data collection is controlled and the output signals are
digitized and delivered to the JWST spacecraft electronics system. We then
discuss the operation of this MIRI data system, including detector readout
patterns, operation of subarrays, and data formats. Finally, we summarize the
performance of the system, including remaining anomalies that need to be
corrected in the data pipeline
Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover.
Desmosomes are prominent adhesive junctions present between many epithelial cells as well as cardiomyocytes. The mechanisms controlling desmosome assembly and remodeling in epithelial and cardiac tissue are poorly understood. We recently identified protein palmitoylation as a mechanism regulating desmosome dynamics. In this study, we have focused on the palmitoylation of the desmosomal cadherin desmoglein-2 (Dsg2) and characterized the role that palmitoylation of Dsg2 plays in its localization and stability in cultured cells. We identified two cysteine residues in the juxtamembrane (intracellular anchor) domain of Dsg2 that, when mutated, eliminate its palmitoylation. These cysteine residues are conserved in all four desmoglein family members. Although mutant Dsg2 localizes to endogenous desmosomes, there is a significant delay in its incorporation into junctions, and the mutant is also present in a cytoplasmic pool. Triton X-100 solubility assays demonstrate that mutant Dsg2 is more soluble than wild-type protein. Interestingly, trafficking of the mutant Dsg2 to the cell surface was delayed, and a pool of the non-palmitoylated Dsg2 co-localized with lysosomal markers. Taken together, these data suggest that palmitoylation of Dsg2 regulates protein transport to the plasma membrane. Modulation of the palmitoylation status of desmosomal cadherins can affect desmosome dynamics
Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation
We adapt tools from information theory to analyze how an observer comes to
synchronize with the hidden states of a finitary, stationary stochastic
process. We show that synchronization is determined by both the process's
internal organization and by an observer's model of it. We analyze these
components using the convergence of state-block and block-state entropies,
comparing them to the previously known convergence properties of the Shannon
block entropy. Along the way, we introduce a hierarchy of information
quantifiers as derivatives and integrals of these entropies, which parallels a
similar hierarchy introduced for block entropy. We also draw out the duality
between synchronization properties and a process's controllability. The tools
lead to a new classification of a process's alternative representations in
terms of minimality, synchronizability, and unifilarity.Comment: 25 pages, 13 figures, 1 tabl
INTEGRAL/IBIS search for e-e+ annihilation radiation from the Galactic Center Region
Electron-positron annihilation radiation from the Galactic Center region has
been detected since the seventies, but its astrophysical origin is still a
topic of a scientific debate. We have analyzed data of the gamma-ray imager
IBIS/ISGRI onboard of ESA's INTEGRAL platform in the ee line.
During the first year of the missions Galactic Center Deep Exposure no evidence
for point sources at 511 keV has been found in the ISGRI data; the
upper limit for resolved single point sources is estimated to be .Comment: 6 pages, 3 figures; Cospar 2004. To be published in: Advances in
Space Researc
How Hidden are Hidden Processes? A Primer on Crypticity and Entropy Convergence
We investigate a stationary process's crypticity---a measure of the
difference between its hidden state information and its observed
information---using the causal states of computational mechanics. Here, we
motivate crypticity and cryptic order as physically meaningful quantities that
monitor how hidden a hidden process is. This is done by recasting previous
results on the convergence of block entropy and block-state entropy in a
geometric setting, one that is more intuitive and that leads to a number of new
results. For example, we connect crypticity to how an observer synchronizes to
a process. We show that the block-causal-state entropy is a convex function of
block length. We give a complete analysis of spin chains. We present a
classification scheme that surveys stationary processes in terms of their
possible cryptic and Markov orders. We illustrate related entropy convergence
behaviors using a new form of foliated information diagram. Finally, along the
way, we provide a variety of interpretations of crypticity and cryptic order to
establish their naturalness and pervasiveness. Hopefully, these will inspire
new applications in spatially extended and network dynamical systems.Comment: 18 pages, 18 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/iacp2.ht
Many Roads to Synchrony: Natural Time Scales and Their Algorithms
We consider two important time scales---the Markov and cryptic orders---that
monitor how an observer synchronizes to a finitary stochastic process. We show
how to compute these orders exactly and that they are most efficiently
calculated from the epsilon-machine, a process's minimal unifilar model.
Surprisingly, though the Markov order is a basic concept from stochastic
process theory, it is not a probabilistic property of a process. Rather, it is
a topological property and, moreover, it is not computable from any
finite-state model other than the epsilon-machine. Via an exhaustive survey, we
close by demonstrating that infinite Markov and infinite cryptic orders are a
dominant feature in the space of finite-memory processes. We draw out the roles
played in statistical mechanical spin systems by these two complementary length
scales.Comment: 17 pages, 16 figures:
http://cse.ucdavis.edu/~cmg/compmech/pubs/kro.htm. Santa Fe Institute Working
Paper 10-11-02
A comparative framework: how broadly applicable is a 'rigorous' critical junctures framework?
The paper tests Hogan and Doyle's (2007, 2008) framework for examining critical junctures. This framework sought to incorporate the concept of ideational change in understanding critical junctures. Until its development, frameworks utilized in identifying critical junctures were subjective, seeking only to identify crisis, and subsequent policy changes, arguing that one invariably led to the other, as both occurred around the same time. Hogan and Doyle (2007, 2008) hypothesized ideational change as an intermediating variable in their framework, determining if, and when, a crisis leads to radical policy change. Here we test this framework on cases similar to, but different from, those employed in developing the exemplar. This will enable us determine whether the framework's relegation of ideational change to a condition of crisis holds, or, if ideational change has more importance than is ascribed to it by this framework. This will also enable us determined if the framework itself is robust, and fit for the purposes it was designed to perform â identifying the nature of policy change
Interplay Between Time-Temperature-Transformation and the Liquid-Liquid Phase Transition in Water
We study the TIP5P water model proposed by Mahoney and Jorgensen, which is
closer to real water than previously-proposed classical pairwise additive
potentials. We simulate the model in a wide range of deeply supercooled states
and find (i) the existence of a non-monotonic ``nose-shaped'' temperature of
maximum density line and a non-reentrant spinodal, (ii) the presence of a low
temperature phase transition, (iii) the free evolution of bulk water to ice,
and (iv) the time-temperature-transformation curves at different densities.Comment: RevTeX4, 4 pages, 4 eps figure
Detection of gamma-ray lines from interstellar 60Fe by the high resolution spectrometer SPI
It is believed that core-collapse supernovae (CCSN), occurring at a rate
about once per century, have seeded the interstellar medium with long-lived
radioisotopes such as 60Fe (half-life 1.5 Myr), which can be detected by the
gamma rays emitted when they beta-decay. Here we report the detection of the
60Fe decay lines at 1173 keV and 1333 keV with fluxes 3.7 +/- 1.1 x 10(-5) ph
cm(-2) s(-1) per line, in spectra taken by the SPI spectrometer on board
INTEGRAL during its first year. The same analysis applied to the 1809 keV line
of 26Al yielded a line flux ratio 60Fe/26Al = 0.11 +/- 0.03. This supports the
hypothesis that there is an extra source of 26Al in addition to CCSN.Comment: 4pp., 5 Figs., accepted by Astronomy & Astrophysics (letter), ref.'s
comments include
Thermodynamics, Structure, and Dynamics of Water Confined between Hydrophobic Plates
We perform molecular dynamics simulations of 512 water-like molecules that
interact via the TIP5P potential and are confined between two smooth
hydrophobic plates that are separated by 1.10 nm. We find that the anomalous
thermodynamic properties of water are shifted to lower temperatures relative to
the bulk by K. The dynamics and structure of the confined water
resemble bulk water at higher temperatures, consistent with the shift of
thermodynamic anomalies to lower temperature. Due to this shift, our
confined water simulations (down to K) do not reach sufficiently low
temperature to observe a liquid-liquid phase transition found for bulk water at
K using the TIP5P potential. We find that the different
crystalline structures that can form for two different separations of the
plates, 0.7 nm and 1.10 nm, have no counterparts in the bulk system, and
discuss the relevance to experiments on confined water.Comment: 31 pages, 14 figure
- âŠ