2,034 research outputs found
5 year Global 3-mm VLBI survey of Gamma-ray active blazars
The Global mm-VLBI Array (GMVA) is a network of 14 3\,mm and 7\,mm capable
telescopes spanning Europe and the United States, with planned extensions to
Asia. The array is capable of sensitive maps with angular resolution often
exceeding 50\,as. Using the GMVA, a large sample of prominent -ray
blazars have been observed approximately 6 monthly from later 2008 until now.
Combining 3\,mm maps from the GMVA with near-in-time 7\,mm maps from the
VLBA-BU-BLAZAR program and 2\,cm maps from the MOJAVE program, we determine the
sub-pc morphology and high frequency spectral structure of -ray
blazars. The magnetic field strength can be estimated at different locations
along the jet under the assumption of equipartition between magnetic field and
relativistic particle energies. Making assumptions on the jet magnetic field
configuration (e.g. poloidal or toroidal), we can estimate the separation of
the mm-wave "core" and the jet base, and estimate the strength of the magnetic
field there. The results of this analysis show that on average, the magnetic
field strength decreases with a power-law , .
This suggests that on average, the mm-wave "core" is \,pc downstream
of the de-projected jet apex and that the magnetic field strength is of the
order \,kG, broadly consistent with the predictions of
magnetic jet launching (e.g. via magnetically arrested disks (MAD)).Comment: 6 pages, 1 figur
N-Body Simulations of Compact Young Clusters near the Galactic Center
We investigate the dynamical evolution of compact young star clusters (CYCs)
near the Galactic center (GC) using Aarseth's Nbody6 codes. The relatively
small number of stars in the cluster (5,000-20,000) makes real-number N-body
simulations for these clusters feasible on current workstations. Using
Fokker-Planck (F-P) models, Kim, Morris, & Lee (1999) have made a survey of
cluster lifetimes for various initial conditions, and have found that clusters
with a mass <~ 2x10^4 Msun evaporate in ~10 Myr. These results were, however,
to be confirmed by N-body simulations because some extreme cluster conditions,
such as strong tidal forces and a large stellar mass range participating in the
dynamical evolution, might violate assumptions made in F-P models. Here we find
that, in most cases, the CYC lifetimes of previous F-P calculations are 5-30%
shorter than those from the present N-body simulations. The comparison of
projected number density profiles and stellar mass functions between N-body
simulations and HST/NICMOS observations by Figer et al. (1999) suggests that
the current tidal radius of the Arches cluster is ~1.0 pc, and the following
parameters for the initial conditions of that cluster: total mass of 2x10^4
Msun and mass function slope for intermediate-to-massive stars of 1.75 (the
Salpeter function has 2.35). We also find that the lower stellar mass limit,
the presence of primordial binaries, the amount of initial mass segregation,
and the choice of initial density profile (King or Plummer models) do not
significantly affect the dynamical evolution of CYCs.Comment: 20 pages including 6 figures, To appear in ApJ, Dec 20 issu
Evaporation of Compact Young Clusters near the Galactic Center
We investigate the dynamical evolution of compact young clusters (CYCs) near
the Galactic center (GC) using Fokker-Planck models. CYCs are very young (< 5
Myr), compact (< 1 pc), and only a few tens of pc away from the GC, while they
appear to be as massive as the smallest Galactic globular clusters (~10^4
Msun). A survey of cluster lifetimes for various initial mass functions,
cluster masses, and galactocentric radii is presented. Short relaxation times
due to the compactness of CYCs, and the strong tidal fields near the GC make
clusters evaporate fairly quickly. Depending on cluster parameters, mass
segregation may occur on a time scale shorter than the lifetimes of most
massive stars, which accelerates the cluster's dynamical evolution even more.
When the difference between the upper and lower mass boundaries of the initial
mass function is large enough, strongly selective ejection of lighter stars
makes massive stars dominate even in the outer regions of the cluster, so the
dynamical evolution of those clusters is weakly dependent on the lower mass
boundary. The mass bins for Fokker-Planck simulations were carefully chosen to
properly account for a relatively small number of the most massive stars. We
find that clusters with a mass <~ 2x10^4 Msun evaporate in <~ 10 Myr. A simple
calculation based on the total masses in observed CYCs and the lifetimes
obtained here indicates that the massive CYCs comprise only a fraction of the
star formation rate (SFR) in the inner bulge estimated from Lyman continuum
photons and far-IR observations.Comment: 20 pages in two-column format, accepted for publication in Ap
Spatially resolved origin of mm-wave linear polarization in the nuclear region of 3C 84
We report results from a deep polarization imaging of the nearby radio galaxy 3C 84 (NGC 1275). The source was observed with the Global Millimeter VLBI Array (GMVA) at 86 GHz at an ultra-high angular resolution of 50μas (corresponding to 250R). We also add complementary multi-wavelength data from the Very Long Baseline Array (VLBA; 15 & 43 GHz) and from the Atacama Large Millimeter/submillimeter Array (ALMA; 97.5, 233.0, and 343.5 GHz). At 86 GHz, we measure a fractional linear polarization of ~ 2% in the VLBI core region. The polarization morphology suggests that the emission is associated with an underlying limb-brightened jet. The fractional linear polarization is lower at 43 and 15 GHz (~ 0.3-0.7% and < 0.1%, respectively). This suggests an increasing linear polarization degree towards shorter wavelengths on VLBI scales. We also obtain a large rotation measure (RM) of ~ 10⁵⁻⁶ rad/m² in the core at ≳43 GHz. Moreover, the VLBA 43 GHz observations show a variable RM in the VLBI core region during a small flare in 2015. Faraday depolarization and Faraday conversion in an inhomogeneous and mildly relativistic plasma could explain the observed linear polarization characteristics and the previously measured frequency dependence of the circular polarization. Our Faraday depolarization modeling suggests that the RM most likely originates from an external screen with a highly uniform RM distribution. To explain the large RM value, the uniform RM distribution, and the RM variability, we suggest that the Faraday rotation is caused by a boundary layer in a transversely stratified jet. Based on the RM and the synchrotron spectrum of the core, we provide an estimate for the magnetic field strength and the electron density of the jet plasma.Accepted manuscrip
The slope of the black-hole mass versus velocity dispersion correlation
Observations of nearby galaxies reveal a strong correlation between the mass
of the central dark object M and the velocity dispersion sigma of the host
galaxy, of the form log(M/M_sun) = a + b*log(sigma/sigma_0); however, published
estimates of the slope b span a wide range (3.75 to 5.3). Merritt & Ferrarese
have argued that low slopes (<4) arise because of neglect of random measurement
errors in the dispersions and an incorrect choice for the dispersion of the
Milky Way Galaxy. We show that these explanations account for at most a small
part of the slope range. Instead, the range of slopes arises mostly because of
systematic differences in the velocity dispersions used by different groups for
the same galaxies. The origin of these differences remains unclear, but we
suggest that one significant component of the difference results from Ferrarese
& Merritt's extrapolation of central velocity dispersions to r_e/8 (r_e is the
effective radius) using an empirical formula. Another component may arise from
dispersion-dependent systematic errors in the measurements. A new determination
of the slope using 31 galaxies yields b=4.02 +/- 0.32, a=8.13 +/- 0.06, for
sigma_0=200 km/s. The M-sigma relation has an intrinsic dispersion in log M
that is no larger than 0.3 dex. In an Appendix, we present a simple model for
the velocity-dispersion profile of the Galactic bulge.Comment: 37 pages, 9 figure
Intense high-altitude auroral electric fields - temporal and spatial characteristics
International audienceCluster electric field, magnetic field, and energetic electron data are analyzed for two events of intense auroral electric field variations, both encountered in the Plasma Sheet Boundary Layer (PSBL), in the evening local time sector, and at approximately 5RE geocentric distance. The most intense electric fields (peaking at 450 and 1600mV/m, respectively) were found to be quasi-static, unipolar, relatively stable on the time scale of at least half a minute, and associated with moving downward FAC sheets (peaking at ~10?A/m2), downward Poynting flux (peaking at ~35mW/m2), and upward electron beams with characteristic energies consistent with the perpendicular potentials (all values being mapped to 1RE geocentric distance). For these two events in the return current region, quasi-static electric field structures and associated FACs were found to dominate the upward acceleration of electrons, as well as the energy transport between the ionosphere and the magnetosphere, although Alfvén waves clearly also contributed to these processes
A Detailed Analysis of the Dust Formation Zone of IRC+10216 Derived from Mid-IR Bands of C2H2 and HCN
A spectral survey of IRC+10216 has been carried out in the range 11 to 14 um
with a spectral resolution of about 4 km s^-1. We have identified a forest of
lines in six bands of C2H2 involving the vibrational states from the ground to
3nu5 and in two bands of HCN, involving the vibrational states from the ground
up to 2nu2. Some of these transitions are observed also in H13CCH and H13CN. We
have estimated the kinetic, vibrational, and rotational temperatures, and the
abundances and column densities of C2H2 and HCN between 1 and 300 R* (1.5E16
cm) by fitting about 300 of these ro-vibrational lines. The envelope can be
divided into three regions with approximate boundaries at 0.019 arcsec (the
stellar photosphere), 0.1 arcsec (the inner dust formation zone), and 0.4
arcsec (outer dust formation zone). Most of the lines might require a large
microturbulence broadening. The derived abundances of C2H2 and HCN increase by
factors of 10 and 4, respectively, from the innermost envelope outwards. The
derived column densities for both C2H2 and HCN are 1.6E19 cm^-2. Vibrational
states up to 3000 K above ground are populated, suggesting pumping by
near-infrared radiation from the star and innermost envelope. Low rotational
levels can be considered under LTE while those with J>20-30 are not
thermalized. A few lines require special analysis to deal with effects like
overlap with lines of other molecules.Comment: 8 pages, 16 figures, 2 machine-readable tables, accepted in the
Astrophysical Journa
Hyperstrong Radio-Wave Scattering in the Galactic Center. II. A Likelihood Analysis of Free Electrons in the Galactic Center
The scattering diameters of Sgr A* and several nearby OH masers (~ 1" at 1
GHz) indicate that a region of enhanced scattering is along the line of sight
to the Galactic center. We combine radio-wave scattering data and free-free
emission and absorption measurements in a likelihood analysis that constrains
the following parameters of the GC scattering region: The GC-scattering region
separation, d; the angular extent of the region, \psi_l; the outer scale on
which density fluctuations occur, l_0; and the gas temperature, T. The maximum
likelihood estimates of these parameters are d = 133_{-80}^{+200} pc, 0.5
degrees <= \psi_l <~ 1 degrees, and (l_0/1 pc)^{2/3}T^{-1/2} = 10^{-7 +/- 0.8}.
As host media for the scattering, we consider the photoionized surface layers
of molecular clouds and the interfaces between molecular clouds and the 10^7 K
ambient gas. We are unable to make an unambiguous determination, but we favor
an interface model in which the scattering medium is hot (T ~ 10^6 K) and dense
(n_e ~ 10 cm^{-3}). The GC scattering region produces a 1 GHz scattering
diameter for an extragalactic source of 90", if the region is a single screen,
or 180", if the region wraps around the GC, as appears probable. We modify the
Taylor-Cordes model for the Galactic distribution of free electrons in order to
include an explicit GC component. Pulsars seen through this region will have a
dispersion measure of approximately 2000 pc cm^{-3}, of which 75% arises from
the GC component. We stress the uniqueness of the GC scattering region,
probably resulting from the high-pressure environment in the GC.Comment: 39 pages with 9 PostScript figures; LaTeX2e with AASTeX macro aaspp4,
to be published in Ap
Characteristics of quasi-static potential structures observed in the auroral return current region by Cluster
International audienceTemporal and spatial characteristics of intense quasi-static electric fields and associated electric potential structures in the return current region are discussed using Cluster observations at geocentric distances of about 5 Earth radii. Results are presented from four Cluster encounters with such acceleration structures to illustrate common as well as different features of such structures. The electric field structures are characterized by (all values are projected to 100 km altitude) peak amplitudes of ?1V/m, bipolar or unipolar profiles, perpendicular scale sizes of ?10km, occurrence at auroral plasma boundaries associated with plasma density gradients, downward field-aligned currents of ?10µA/m2, and upward electron beams with characteristic energies of a few hundred eV to a fewkeV. Two events illustrate the temporal evolution of bipolar, diverging electric field structures, indicative of positive U-shaped potentials increasing in magnitude from less than 1kV to a few kV on a few 100s time scale. This is also the typical formation time for ionospheric plasma cavities, which are connected to the potential structure and suggested to evolve hand-in-hand with these. In one of these events an energy decay of inverted-V ions was observed in the upward field-aligned current region prior to the acceleration potential increase in the adjacent downward current region, possibly suggesting that a potential redistribution took place between the two current branches. The other two events were characterized by intense unipolar electric fields, indicative of S-shaped potential contours and were encountered at the polar cap boundary. The total observation time for these events was typically 10-20s, too short for monitoring the evolution of the structure, but yet of interest for revealing their short term stability. The locations of the two bipolar events at the poleward boundary of the central plasma sheet and of the two unipolar events at the polar cap boundary, suggest that the special profile shape depends on whether plasma populations, dense enough to support upward field-aligned currents and closure of the return current, exist on both sides, or on one side only, of the boundary
- …