15 research outputs found

    Mechanistic unity of the predictive mind

    Get PDF
    It is often recognized that cognitive science employs a diverse explanatory toolkit. It has also been argued that cognitive scientists should embrace this explanatory diversity rather than pursue search for some grand unificatory framework or theory. This pluralist stance dovetails with the mechanistic view of cognitive-scientific explanation. However, one recently proposed theory – based on an idea that the brain is a predictive engine – opposes the spirit of pluralism by unapologetically wearing unificatory ambitions on its sleeves. In this paper, my aim is to investigate those pretentions to elucidate what sort of unification is on offer. I challenge the idea that explanatory unification of cognitive science follows from the Free Energy Principle. I claim that if the predictive story is to provide an explanatory unification, it is rather by proposing that many distinct cognitive mechanisms fall under the same functional schema that pertains to prediction error minimization. Seen this way, the brain is not simply a predictive mechanism – it is a collection of predictive mechanisms. I also pursue a more general aim of investigating the value of unificatory power for mechanistic explanations. I argue that even though unification is not an absolute evaluative criterion for mechanistic explanations, it may play an epistemic role in evaluating the credibility of an explanation relative to its direct competitors

    Structural representations: causally relevant and different from detectors

    Get PDF
    This paper centers around the notion that internal, mental representations are grounded in structural similarity, i.e., that they are so-called S-representations. We show how S-representations may be causally relevant and argue that they are distinct from mere detectors. First, using the neomechanist theory of explanation and the interventionist account of causal relevance, we provide a precise interpretation of the claim that in S-representations, structural similarity serves as a ‘‘fuel of success’’, i.e., a relation that is exploitable for the representation using system. Then, we discuss crucial differences between S-representations and indicators or detectors, showing that—contrary to claims made in the literature—there is an important theoretical distinction to be drawn between the two

    Predictive coding and representationalism

    Get PDF
    According to the predictive coding theory of cognition (PCT), brains are predictive machines that use perception and action to minimize prediction error, i.e. the discrepancy between bottom–up, externally-generated sensory signals and top–down, internally-generated sensory predictions. Many consider PCT to have an explanatory scope that is unparalleled in contemporary cognitive science and see in it a framework that could potentially provide us with a unified account of cognition. It is also commonly assumed that PCT is a representational theory of sorts, in the sense that it postulates that our cognitive contact with the world is mediated by internal representations. However, the exact sense in which PCT is representational remains unclear; neither is it clear that it deserves such status—that is, whether it really invokes structures that are truly and nontrivially representational in nature. In the present article, I argue that the representational pretensions of PCT are completely justified. This is because the theory postulates cognitive structures—namely action-guiding, detachable, structural models that afford representational error detection—that play genuinely representational functions within the cognitive system

    From Computer Metaphor to Computational Modeling: The Evolution of Computationalism

    Get PDF
    In this paper, I argue that computationalism is a progressive research tradition. Its metaphysical assumptions are that nervous systems are computational, and that information processing is necessary for cognition to occur. First, the primary reasons why information processing should explain cognition are reviewed. Then I argue that early formulations of these reasons are outdated. However, by relying on the mechanistic account of physical computation, they can be recast in a compelling way. Next, I contrast two computational models of working memory to show how modeling has progressed over the years. The methodological assumptions of new modeling work are best understood in the mechanistic framework, which is evidenced by the way in which models are empirically validated. Moreover, the methodological and theoretical progress in computational neuroscience vindicates the new mechanistic approach to explanation, which, at the same time, justifies the best practices of computational modeling. Overall, computational modeling is deservedly successful in cognitive (neuro)science. Its successes are related to deep conceptual connections between cognition and computation. Computationalism is not only here to stay, it becomes stronger every year
    corecore