85 research outputs found

    An extensive photometric study of the Blazhko RR Lyrae star RZ Lyr

    Full text link
    The analysis of recent, extended multicolour CCD and archive photoelectric, photographic and visual observations has revealed several important properties of RZ Lyr, an RRab-type variable exhibiting large-amplitude Blazhko modulation. On the time-base of \sim110 yr, a strict anticorrelation between the pulsation and modulation period changes is established. The light curve of RZ Lyr shows a remarkable bump on the descending branch in the small-amplitude phase of the modulation, similarly to the light curves of bump Cepheids. We speculate that the stellar structure temporally suits a 4:1 resonance between the periods of the fundamental and one of the higher-order radial modes in this modulation phase. The light-curve variation of RZ Lyr can be correctly fitted with a two-modulation-component solution; the 121 d period of the main modulation is nearly but not exactly four times longer than the period of the secondary modulation component. Using the inverse photometric method, the variations in the pulsation-averaged values of the physical parameters in different phases of both modulation components are determined.Comment: 15 pages, 14 figures, 8 tables. Published in MNRAS, 2012. [v3]: Only change: title correcte

    Novel spectrophotometric method for determination of cinacalcet hydrochloride in its tablets via derivatization with 1,2-naphthoquinone-4-sulphonate

    Get PDF
    This study represents the first report on the development of a novel spectrophotometric method for determination of cinacalcet hydrochloride (CIN) in its tablet dosage forms. Studies were carried out to investigate the reaction between CIN and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. In alkaline medium (pH 8.5), an orange red-colored product exhibiting maximum absorption peak (λmax) at 490 nm was produced. The stoichiometry and kinetic of the reaction were investigated and the reaction mechanism was postulated. This color-developing reaction was employed in the development of a simple and rapid visible-spectrophotometric method for determination of CIN in its tablets. Under the optimized reaction conditions, Beer's law correlating the absorbance with CIN concentration was obeyed in the range of 3 - 100 μg/ml with good correlation coefficient (0.9993). The molar absorptivity (ε) was 4.2 × 105 l/mol/cm. The limits of detection and quantification were 1.9 and 5.7 μg/ml, respectively. The precision of the method was satisfactory; the values of relative standard deviations (RSD) did not exceed 2%. No interference was observed from the excipients that are present in the tablets. The proposed method was applied successfully for the determination of CIN in its pharmaceutical tablets with good accuracy and precisions; the label claim percentage was 100.80 - 102.23 ± 1.27 - 1.62%. The results were compared favorably with those of a reference pre-validated method. The method is practical and valuable in terms of its routine application in quality control laboratories

    Novi analitički pristup sa smanjenom potrošnjom organskih otapala u spektrofotometrijskoj analizi temeljenoj na prijenosu naboja: Primjena u analizi nekih antihipertenziva

    Get PDF
    The present study describes the development of a novel analytical approach that can reduce by 50-fold the consumption of organic solvents in the charge transfer (CT)-based spectrophotometric analysis. The proposed approach employed 96-microwell assay plates for carrying out the reaction. The CT reaction between the electron-donating analyte and electron-accepting reagent was performed in microwells (200-µL of organic solvent) and the color signals were measured with a microwell-plate reader. Optimum conditions for the proposed approach were established for two antihypertensive drugs, namely ramipril (RML) and lisinopril (LSL) as model compounds for the electron-donating analytes, and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as a -electron acceptor. Under the optimum conditions, Beer’s law was obeyed in the concentration range of 6–100 and 6–60 g mL1 for RML and LSL, respectively. The limits of detection were 0.97 and 1.10 g mL1 for RML and LSL, respectively. The precision of the methods was satisfactory; the values of relative standard deviations did not exceed 1.1 %. The proposed approach was successfully applied to the analysis of pharmaceutical dosage forms with good accuracy and precision. The results were comparable with those of the reported methods. The approach described herein is of great practical value in pharmaceutical analysis because it reduces the exposure of analysts to the toxic effects of organic solvents, lowers the analysis cost by 50-fold, and it has a high throughput property. Although the approach was validated for RML and LSL, the same methodology could be used for any electron-donating analyte for which a CT-reaction can be performed.U radu je opisan razvoj novog analitičkog pristupa koji 50 puta smanjuje potrošnju organskih otapala u spektrofotometrijskoj analizi na bazi prijenosa naboja (CT). Predložena metoda koristi ploče s 96 jažica za izvođenje analize. CT reakcije između elektron-donora i elektron-akceptora izvodi se u jažicama s 200-µL organskog otapala. Promjene boje mjere se pomoću posebnog mikročitača za ploče s jažicama. Određeni su optimalni uvjeti za dva antihipertenzivna lijeka, ramipril (RML) i lizinopril (LSL) koji su upotrebljeni kao modelni spojevi za elektron-donorske analite, i 2,3-diklor-5,6-dicijano-1,4-benzokinon (DDQ) kao -elektronski akceptor. U optimalnim uvjetima Beerov zakon je vrijedio u koncentracijskom području 6–100 i 6–60 g mL1 za RML, odnosno LSL. Granice detekcije bile su 0,97 i 1,1 g mL1 za RML, odnosno LSL. Preciznost metode bila je zadovoljavajuća, a relativna standardna devijacija bila je manja od 1,1 %. Predložena metoda uspješno je primijenjena za analizu doziranih farmaceutskih pripravaka koji sadrže ispitivane lijekove, uz dobru točnost i preciznost. Rezultati predložene metode usporedivi su s rezultatima poznatih metoda. Postupak opisan u ovom radu vrlo je praktičan: analitičari su manje izloženi toksičnim učincima organskih otapala, troškovi analize smanjeni su 50 puta, a također ju odlikuje visoka propusnost. Iako je postupak validiran za RML i LSL, ista metoda može se upotrijebiti za elektron-donirajući analit koji ulazi u CT reakciju

    Slope stability assessment of weathered clay by using field data and computer modelling: a case study from Budapest

    No full text
    International audienceA future development site of a housing estate, an abandoned-brick yard with clayey slopes was studied in details to assess slope stability and to calculate the factor of safety. The Oligocene clay, the former raw material, is divided into two different geotechnical units in the clay pit. The lower one consists of grey impermeable clays while the upper unit is characterised by yellowish weathered clay having a limited permeability. At some localities the topmost weathered clay layers are covered by loess, and slope debris. Parts of the former pit were also used as a landfill site. The slope stability analyses were performed based on borehole information and laboratory analyses in order to provide necessary engineering geological data for further site development and urban planning. Two geotechnical codes Plaxis and Geo4 were used to model the slope failures and assess the slope stability. The aim of using two different approaches was to compare them since Plaxis uses finite elements modelling while Geo4 uses conventional calculation methods to obtain circular and polygonal slip surfaces. According to model calculations and field data, the main trigger mechanisms of landslides seem to be high pore pressure due to rainwater and small slope debris covered springs. The slip surface is located at the boundary zone of yellow weathered and grey unaltered clay. Two computer models gave very similar results; although Plaxis provides combined safety factor which is slightly more pessimistic when compared to the safety factor obtained by using Geo4
    corecore