2,525 research outputs found

    Twisted K-theory and finite-dimensional approximation

    Get PDF
    We provide a finite-dimensional model of the twisted K-group twisted by any degree three integral cohomology class of a CW complex. One key to the model is Furuta's generalized vector bundle, and the other is a finite-dimensional approximation of Fredholm operators.Comment: 26 pages, LaTeX 2e, Xypic; main theorem improve

    Entanglement Cost of Three-Level Antisymmetric States

    Get PDF
    We show that the entanglement cost of the three-dimensional antisymmetric states is one ebit.Comment: 8page

    Noncommutative Wess-Zumino-Witten actions and their Seiberg-Witten invariance

    Full text link
    We analyze the noncommutative two-dimensional Wess-Zumino-Witten model and its properties under Seiberg-Witten transformations in the operator formulation. We prove that the model is invariant under such transformations even for the noncritical (non chiral) case, in which the coefficients of the kinetic and Wess-Zumino terms are not related. The pure Wess-Zumino term represents a singular case in which this transformation fails to reach a commutative limit. We also discuss potential implications of this result for bosonization.Comment: Version to appear in Nuclear Physics

    Single-qubit gates and measurements in the surface acoustic wave quantum computer

    Full text link
    In the surface acoustic wave quantum computer, the spin state of an electron trapped in a moving quantum dot comprises the physical qubit of the scheme. Via detailed analytic and numerical modeling of the qubit dynamics, we discuss the effect of excitations into higher-energy orbital states of the quantum dot that occur when the qubits pass through magnetic fields. We describe how single-qubit quantum operations, such as single-qubit rotations and single-qubit measurements, can be performed using only localized static magnetic fields. The models provide useful parameter regimes to be explored experimentally when the requirements on semiconductor gate fabrication and the nanomagnetics technology are met in the future.Comment: 13 pages, 10 figures, submitted to Phys. Rev.

    Thermocurrents and their Role in high Q Cavity Performance

    Full text link
    Over the past years it became evident that the quality factor of a superconducting cavity is not only determined by its surface preparation procedure, but is also influenced by the way the cavity is cooled down. Moreover, different data sets exists, some of them indicate that a slow cool-down through the critical temperature is favourable while other data states the exact opposite. Even so there where speculations and some models about the role of thermo-currents and flux-pinning, the difference in behaviour remained a mystery. In this paper we will for the first time present a consistent theoretical model which we confirmed by data that describes the role of thermo-currents, driven by temperature gradients and material transitions. We will clearly show how they impact the quality factor of a cavity, discuss our findings, relate it to findings at other labs and develop mitigation strategies which especially addresses the issue of achieving high quality factors of so-called nitrogen doped cavities in horizontal test

    Dynamical approach to spectator fragmentation in Au+Au reactions at 35 MeV/A

    Full text link
    The characteristics of fragment emission in peripheral 197^{197}Au+197^{197}Au collisions 35 MeV/A are studied using the two clusterization approaches within framework of \emph{quantum molecular dynamics} model. Our model calculations using \emph{minimum spanning tree} (MST) algorithm and advanced clusterization method namely \emph{simulated annealing clusterization algorithm} (SACA) showed that fragment structure can be realized at an earlier time when spectators contribute significantly toward the fragment production even at such a low incident energy. Comparison of model predictions with experimental data reveals that SACA method can nicely reproduce the fragment charge yields and mean charge of the heaviest fragment. This reflects suitability of SACA method over conventional clusterization techniques to investigate spectator matter fragmentation in low energy domain.Comment: 6 pages, 5 figures, accepte

    Dynamics of vortex penetration, jumpwise instabilities and nonlinear surface resistance of type-II superconductors in strong rf fields

    Full text link
    We consider nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinâĄÏ‰tB_0\sin\omega t. Using the London theory, we calculate the dissipated power Q(B0,ω)Q(B_0,\omega), and the transient time scales of vortex motion for the linear Bardeen-Stephen viscous drag force, which results in unphysically high vortex velocities during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t)v(t) results in a jump-wise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on nonlinear vortex viscosity η(v)\eta(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v)\eta(v), which not only results in the LO dependence of η(v)\eta(v) for a steady-state motion, but also takes into account retardation of temperature field around rapidly accelerating vortex, and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance RsR_s calculated as a function or rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance RiR_i at low TT, and a hysteretic low-field dependence of Ri(B0)R_i(B_0), which can {\it decrease} as B0B_0 is increased, reaching a minimum at B0B_0 much smaller than the thermodynamic critical field BcB_c.Comment: 18 figure

    Colliding Plane Waves in String Theory

    Full text link
    We construct colliding plane wave solutions in higher dimensional gravity theory with dilaton and higher form flux, which appears naturally in the low energy theory of string theory. Especially, the role of the junction condition in constructing the solutions is emphasized. Our results not only include the previously known CPW solutions, but also provide a wide class of new solutions that is not known in the literature before. We find that late time curvature singularity is always developed for the solutions we obtained in this paper. This supports the generalized version of Tipler's theorem in higher dimensional supergravity.Comment: latex, 25 pages, 1 figur

    Single-electron transport driven by surface acoustic waves: moving quantum dots versus short barriers

    Full text link
    We have investigated the response of the acoustoelectric current driven by a surface-acoustic wave through a quantum point contact in the closed-channel regime. Under proper conditions, the current develops plateaus at integer multiples of ef when the frequency f of the surface-acoustic wave or the gate voltage Vg of the point contact is varied. A pronounced 1.1 MHz beat period of the current indicates that the interference of the surface-acoustic wave with reflected waves matters. This is supported by the results obtained after a second independent beam of surface-acoustic wave was added, traveling in opposite direction. We have found that two sub-intervals can be distinguished within the 1.1 MHz modulation period, where two different sets of plateaus dominate the acoustoelectric-current versus gate-voltage characteristics. In some cases, both types of quantized steps appeared simultaneously, though at different current values, as if they were superposed on each other. Their presence could result from two independent quantization mechanisms for the acoustoelectric current. We point out that short potential barriers determining the properties of our nominally long constrictions could lead to an additional quantization mechanism, independent from those described in the standard model of 'moving quantum dots'.Comment: 25 pages, 12 figures, to be published in a special issue of J. Low Temp. Phys. in honour of Prof. F. Pobel

    MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy

    Full text link
    We analyze the Galactic bulge microlensing event MOA-2003-BLG-37. Although the Einstein timescale is relatively short, t_e=43 days, the lightcurve displays deviations consistent with parallax effects due to the Earth's accelerated motion. We show that the chi^2 surface has four distinct local minima that are induced by the ``jerk-parallax'' degeneracy, with pairs of solutions having projected Einstein radii, \tilde r_e = 1.76 AU and 1.28 AU, respectively. This is the second event displaying such a degeneracy and the first toward the Galactic bulge. For both events, the jerk-parallax formalism accurately describes the offsets between the different solutions, giving hope that when extra solutions exist in future events, they can easily be found. However, the morphologies of the chi^2 surfaces for the two events are quite different, implying that much remains to be understood about this degeneracy.Comment: 19 pages, 3 figures, 1 table, ApJ, in press, 1 July 200
    • 

    corecore