108 research outputs found

    Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density.

    Get PDF
    Background: Chronic hypoxia in utero (CHU) is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury,yet the effects on normal cardiac mechanical performance are poorly understood. Methods: Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen)for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O) with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS) proteins were estimated by immunoblotting. Results: CHU significantly increased body mass (P < 0.001) compared with age-matched control rats but was without effect on relative cardiac mass. For incremental increases in left ventricular balloon volume, diastolic pressure was preserved. However, systolic pressure was significantly greater following CHU for balloon volume = 50 μl (P < 0.01) and up to 200 μl (P < 0.05). For higher balloon volumes systolic pressure was not significantly different from control. Developed pressures were correspondingly increased relative to controls for balloon volumes up to 250 μl (P < 0.05).Left ventricular free wall capillary density was significantly decreased in both epicardium (18%; P <0.05) and endocardium (11%; P < 0.05) despite preserved coronary flow. Western blot analysis revealed no change to the expression of SERCA2a or nNOS but immuno-detectable eNOS protein was significantly decreased (P < 0.001) in cardiac tissue following chronic hypoxia in utero. Conclusion: These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance

    Dysregulation of chemo-cytokine production in schizophrenic patients versus healthy controls

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The exact cause of schizophrenia is not known, although several aetiological theories have been proposed for the disease, including developmental or neurodegenerative processes, neurotransmitter abnormalities, viral infection and immune dysfunction or autoimmune mechanisms. Growing evidence suggests that specific cytokines and chemokines play a role in signalling the brain to produce neurochemical, neuroendocrine, neuroimmune and behavioural changes. A relationship between inflammation and schizophrenia was supported by abnormal cytokines production, abnormal concentrations of cytokines and cytokine receptors in the blood and cerebrospinal fluid in schizophrenia. Since the neuropathology of schizophrenia has recently been reported to be closely associated with microglial activation we aimed to determined whether spontaneous or LPS-induced peripheral blood mononuclear cell chemokines and cytokines production is dysregulated in schizophrenic patients compared to healthy subjects. We enrolled 51 untreated first-episode schizophrenics (SC) and 40 healthy subjects (HC) and the levels of MCP-1, MIP-1α, IL-8, IL-18, IFN-γ and RANTES were determined by Elisa method in cell-free supernatants of PBMC cultures.</p> <p>Results</p> <p>In the simultaneous quantification we found significantly higher levels of constitutively and LPS-induced MCP-1, MIP-1α, IL-8 and IL-18, and lower RANTES and IFNγ levels released by PBMC of SC patients compared with HC. In ten SC patients receiving therapy with risperidone, olanzapine or clozapine basal and LPS-induced production of RANTES and IL-18 was increased, while both basal and LPS-induced MCP-1 production was decreased. No statistically significant differences were detected in serum levels after therapy.</p> <p>Conclusion</p> <p>The observation that in schizophrenic patients the PBMC production of selected chemo-cytokines is dysregulated reinforces the hypothesis that the peripheral cyto-chemokine network is involved in the pathophysiology of schizophrenia. These preliminary, but promising data are supportive of the application of wider profiling approaches to the identification of biomarker as diagnostic tools for the analysis of psychiatric diseases.</p

    Padre-bambino e madre-bambino: stili di interazione e status sociale tra coetanei

    No full text

    Mast Cells and Arachidonic Acid Cascade in Inflammation

    Get PDF
    Prostaglandin D2 PGD2 is a major cyclooxygenase metabolite of arachidonic acid produced by mast cells and it is released following allergen challenge in diseases, such as allergic diseases. PGD2 may act as a neuromodulator and as an allergic and inflammatory mediator. In allergic diseases, activated mast cell synthesizes prostaglandin D2 (first cyclo-oxygenate mediator) which has bronchoconstrictive and vasodilating effects and attracts several leukocytes. It has been found that activated mast cells, challenged with physiological and non- physiological secretagogues, release elevated histamine and tryptase and chymase, leukotrienes B4, C4 and D4, 5-hydroxyeicosatetraenoic acid, PGD2, Platelet Activating Factor (PAF), heparin, and high-molecular-weight neutrophil chemotactic factor and cytokines/chemokines. PGD2 exerts its biological activity through the DP and CRTH2 receptors and their cDNA cloning which were characterized 15 years ago. In this report, we revisited the biological effects of arachidonic acid compounds released by activated mast cells in allergic and inflammatory states

    Trimetazidine improves post-ischemic recovery by preserving endothelial nitric oxide synthase expression in isolated working rat hearts

    No full text
    Objective: Previous investigations have consistently shown that the piperazine derivative trimetazidine (TMZ, 1-[2,3,4-trimethoxybenzil] piperazine, dihydrocloride) has cardioprotective eVects in the experimental ischemia–reperfusion model. We tested the hypothesis that cardioprotective eVect of TMZ is partly mediated by preservation of the endothelial barrier of the coronary microcirculation. Methods: Isolated Wistar rat (250–300 g) hearts were subjected to a 15min period of global ischemia and 180min reperfusion in the presence or absence of 1 M TMZ. Hemodynamic parameters, heart weight, creatinekinase (CK) release and microvascular permeability (FITC–albumin extravasation) were evaluated. In addition, eNOS gene expression was estimated by rt-PCR, and eNOS protein levels were assessed by Western analysis. In order to conWrm the involvement of NO in mediating the cardioprotective eVects of TMZ, 30 M N-nitro-L-arginine methylester (L-NAME), a speciWc inhibitor of nitric oxide synthase, was used. Results: After ischemia and reperfusion, TMZ produced a signiWcant improvement of mechanical function associated with a reduction of CK release and FITC–albumin diVusion (P <0.001); the agent also resulted in improvement in coronary Xow (at 45 min +27% vs control). The eNOS mRNA and protein levels were signiWcantly higher in TMZ-treated hearts compared to controls. The addition of L-NAME signiWcantly reduced the beneWcial eVects of TMZ on contractile function, CK release and FITC–albumin diVusion. Conclusions: in the isolated rat heart, TMZ exerts a relevant, NO-dependent, cardioprotection against ischemia–reperfusion injury and preserves the endothelial barrier of the coronary circulation. This could contribute to explain the cardioprotective action of TMZ following ischemia and reperfusio

    Allergic inflammation: role of cytokines with special emphasis on IL-4

    No full text
    This review examines recent articles on the relationship of cytokines to allergy and inflammation with particular emphasis on interleukin (IL)-4. The objective of this article is therefore to review published studies to identify cytokines consistently involved in allergic inflammation. Proinflammatory cytokines, including IL-4, IL-5, IL-13 and GM-CSF along with TNF-alpha play a role in allergen-induced airway leukocyte recruitment and these cytokines can be generated by T mast cells and other cells. In addition, IL-9, IL-25, IL-33, IL-17, IL-27 and IFN-gamma are deeply involved in the regulation of asthma. Blocking the effect of these proinflammatory cytokines might provide new therapeutic approaches for the control of allergy and inflammation

    Chronic treatment with rosuvastatin modulates nitric oxide synthase expression and reduces ischemia-reperfusion injury in rat hearts

    No full text
    Objective: Due to reported modulatory effects of statins on nitric oxide synthase (NOS) expression, we tested the hypothesis of protective effects of in vivo chronic treatment with rosuvastatin, a novel 3-hydroxy-3-methyl-glutaryl coenzyme A-reductase inhibitor, on ischemia– reperfusion injury, and investigated mechanisms involved. Methods: After 3 weeks of in vivo treatment with rosuvastatin (0.2–20 mg/kg/day) or placebo, excised hearts from Wistar rats were subjected to 15 min global ischemia and 22–180 min reperfusion. We evaluated creatine-phosphokinase and nitrite levels in the coronary effluent, heart weight changes, microvascular permeability (extravasation of fluoresceine-labeled albumin), ultrastructural alterations, and the expression of endothelial (e) and inducible (i) nitric oxide synthase (NOS) (by reverse-transcription polymerase chain reaction and Western blotting). Results: Rosuvastatin 0.2 and 2 mg/kg/day significantly reduced myocardial damage and vascular hyperpermeability, concomitant with a reduction in endothelial and cardiomyocyte lesions. At 2 mg/kg/day, rosuvastatin significantly increased eNOS mRNA and protein compared with untreated hearts, and conversely decreased iNOS mRNA and protein, as well as nitrite production after ischemia–reperfusion. The addition of the NOS inhibitor NE-nitro-l-arginine methylester (l-NAME, 30 Amol/L) significantly reduced cardioprotection against ischemia–reperfusion. Conclusions: Chronic treatment with rosuvastatin before ischemia reduces ischemia–reperfusion injury and prevents coronary endothelial cell and cardiomyocyte damage by NO-dependent mechanism
    corecore