359 research outputs found

    Ontology-based faceted semantic search with automatic sense disambiguation for bioenergy domain

    Get PDF
    WordNet is a lexicon widely known and used as an ontological resource hosting comparatively large collection of semantically interconnected words. Use of such resources produces meaningful results and improves users’ search experience through the increased precision and recall. This paper presents our facet-enabled WordNet powered semantic search work done in the context of the bioenergy domain. The main hurdle to achieving the expected result was sense disambiguation further complicated by the occasional fine-grained distinction of meanings of the terms in WordNet. To overcome this issue, this paper proposes a sense disambiguation methodology that uses bioenergy domain related ontologies (extracted from WordNet automatically), WordNet concept hierarchy and term sense rank

    Model-based documentation

    Get PDF
    Knowledge acquisition is becoming an integral part of the manufacturing industries, which rely on domain experts in various phases of product life cycle including design, analysis, manufacturing, operation and maintenance. It has the potential to enable knowledge reuse, however, poorly managed knowledge can cause information loss and inefficiency. If technical documentation is managed well in the manufacturing industries, intended piece of knowledge can easily be located, used and reused for purpose and as a result, the corresponding industry can be benefited. Some examples of technical documentation are design specification, operating manual and maintenance manual. Model-based Documentation (MBD) is a documentation approach that uses model to provide structure to the data of the documents. MBD can be thought of as a way to better organize knowledge thereby knowledge identification and retrieval become easier, faster and efficient. In this paper, we propose MBD and its extension as a potential solution to overcome the issues involved in the typical technical documentation approaches

    Temporal and Geospatial Trends of Pediatric Cancer Incidence in Nebraska Over a 24-Year Period

    Get PDF
    BACKGROUND: Data from the Surveillance, Epidemiology, and End Results (SEER) revealed that the incidence of pediatric cancer in Nebraska exceeded the national average during 2009-2013. Further investigation could help understand these patterns. METHODS: This retrospective cohort study investigated pediatric cancer (0-19 years old) age adjusted incidence rates (AAR) in Nebraska using the Nebraska Cancer Registry. SEER AARs were also calculated as a proxy for pediatric cancer incidence in the United States (1990-2013) and compared to the Nebraska data. Geographic Information System (GIS) mapping was also used to display the spatial distribution of cancer in Nebraska at the county level. Finally, location-allocation analysis (LAA) was performed to identify a site for the placement of a medical center to best accommodate rural pediatric cancer cases. RESULTS: The AAR of pediatric cancers was 173.3 per 1,000,000 in Nebraska compared to 167.1 per 1,000,000 in SEER. The AAR for lymphoma was significantly higher in Nebraska (28.1 vs. 24.6 per 1,000,000; p = 0.009). For the 15-19 age group, the AAR for the 3 most common pediatric cancers were higher in Nebraska (p \u3c 0.05). Twenty-three counties located \u3e2 h driving distance to care facilities showed at least a 10% higher incidence than the overall state AAR. GIS mapping identified a second potential treatment site that would alleviate this geographic burden. CONCLUSIONS: Regional differences within Nebraska present a challenge for rural populations. Novel use of GIS mapping to highlight regional differences and identify solutions for access to care issues could be used by similar states

    A novel mutation in SEPN1 causing rigid spine muscular dystrophy 1: A Case report

    Get PDF
    Abstract Background Muscular dystrophies are a clinically and genetically heterogeneous group of disorders characterized by variable degrees of progressive muscle degeneration and weakness. There is a wide variability in the age of onset, symptoms and rate of progression in subtypes of these disorders. Herein, we present the results of our study conducted to identify the pathogenic genetic variation involved in our patient affected by rigid spine muscular dystrophy. Case presentation A 14-year-old boy, product of a first-cousin marriage, was enrolled in our study with failure to thrive, fatigue, muscular dystrophy, generalized muscular atrophy, kyphoscoliosis, and flexion contracture of the knees and elbows. Whole-exome sequencing (WES) was carried out on the DNA of the patient to investigate all coding regions and uncovered a novel, homozygous missense mutation in SEPN1 gene (c. 1379 C > T, p.Ser460Phe). This mutation has not been reported before in different public variant databases and also our database (BayanGene), so it is classified as a variation of unknown significance (VUS). Subsequently, it was confirmed that the novel variation was homozygous in our patient and heterozygous in his parents. Different bioinformatics tools showed the damaging effects of the variant on protein. Multiple sequence alignment using BLASTP on ExPASy and WebLogo, revealed the conservation of the mutated residue. Conclusion We reported a novel homozygous mutation in SEPN1 gene that expands our understanding of rigid spine muscular dystrophy. Although bioinformatics analyses of results were in favor of the pathogenicity of the mutation, functional studies are needed to establish the pathogenicity of the variant

    Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets

    Get PDF
    Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed

    Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>microRNAs (miRNA) are short, endogenous transcripts that negatively regulate the expression of specific mRNA targets. miRNAs are found both in tissues and body fluids such as plasma. A major perspective for the use of miRNAs in the clinical setting is as diagnostic plasma markers for neoplasia. While miRNAs are abundant in tissues, they are often scarce in plasma. For quantification of miRNA in plasma it is therefore of importance to use a platform with high sensitivity and linear performance in the low concentration range. This motivated us to evaluate the performance of three commonly used commercial miRNA quantification platforms: GeneChip miRNA 2.0 Array, miRCURY Ready-to-Use PCR, Human panel I+II V1.M, and TaqMan Human MicroRNA Array v3.0.</p> <p>Results</p> <p>Using synthetic miRNA samples and plasma RNA samples spiked with different ratios of 174 synthetic miRNAs we assessed the performance characteristics reproducibility, recovery, specificity, sensitivity and linearity. It was found that while the qRT-PCR based platforms were sufficiently sensitive to reproducibly detect miRNAs at the abundance levels found in human plasma, the array based platform was not. At high miRNA levels both qRT-PCR based platforms performed well in terms of specificity, reproducibility and recovery. At low miRNA levels, as in plasma, the miRCURY platform showed better sensitivity and linearity than the TaqMan platform.</p> <p>Conclusion</p> <p>For profiling clinical samples with low miRNA abundance, such as plasma samples, the miRCURY platform with its better sensitivity and linearity would probably be superior.</p

    Target repurposing for neglected diseases

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Future Science for personal use, not for redistribution. The definitive version was published in Future Medicinal Chemistry 3 (2011): 1307-1315, doi:10.4155/fmc.11.92.Infectious diseases are an enormous burden to global health, and since drug discovery is costly, those infectious diseases that affect the developing world are often not pursued by commercial drug discovery efforts. Therefore, pragmatic means by which new therapeutics can be discovered are needed. One such approach is target repurposing, where pathogen targets are matched with homologous human targets that have been pursued for drug discovery for other indications. In many cases, the medicinal chemistry, structural biology, and biochemistry knowledge around these human targets can be directly repurposed to launch and accelerate new drug discovery efforts against the pathogen targets. This article describes the overarching strategy of target repurposing as a tool for initiating and prosecuting neglected disease drug discovery programs, highlighting this approach with three case studies.Support from the National Institutes of Health (R01 AI082577) is gratefully acknowledged.2012-08-0

    UDP-glucuronosyltransferase UGT1A7 genetic polymorphisms in hepatocellular carcinoma: a differential impact according to seropositivity of HBV or HCV markers?

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>We conducted a case-control study to evaluate the role of UDP-glucuronosyltransferase 1A7 (UGT1A7) polymorphisms in the onset of hepatocellular carcinoma (HCC).</p> <p>Methods:</p> <p>The study included 165 patients with HCC, 134 with cirrhosis and 142 controls without liver disease, matched for age and hospital. All were men younger than 75 years. HCC and cirrhosis patients were stratified according to time since cirrhosis diagnosis.</p> <p>Results:</p> <p>We found a positive association between the UGT1A7*3/*3 genotype and HCC when the comparison was restricted to patients whose disease was of viral origin [OR = 3.4 (0.3–45)] but a negative association when it included only alcoholic patients [OR = 0.1 (0.02–0.6), p = 0.01].</p> <p>Conclusion:</p> <p>Our study shows that UGT1A7 may play a role in hepatocellular carcinogenesis and that this role may differ according to the primary cause of the cirrhosis.</p

    Comprehensive analysis of blood cells and plasma identifies tissue-specific miRNAs as potential novel circulating biomarkers in cattle

    Get PDF
    Abstract Background The potential of circulating miRNAs as biomarkers of tissue function, both in health and disease, has been extensively demonstrated in humans. In addition, circulating miRNA biomarkers offer significant potential towards improving the productivity of livestock species, however, such potential has been hampered by the absence of information on the nature and source of circulating miRNA populations in these species. In addition, many miRNAs originally proposed as robust biomarkers of a particular tissue or disease in humans have been later shown not to be tissue specific and thus to actually have limited biomarker utility. In this study, we comprehensively analysed miRNA profiles in plasma and cell fractions of blood from cattle with the aim to identify tissue-derived miRNAs which may be useful as biomarkers of tissue function in this important food animal species. Results Using small RNA sequencing, we identified 92 miRNAs with significantly higher expression in plasma compared to paired blood cell samples (n = 4 cows). Differences in miRNA levels between plasma and cell fractions were validated for eight out of 10 miRNAs using RT-qPCR (n = 10 cows). Among miRNAs found to be enriched in plasma, we confirmed miR-122 (liver), miR-133a (muscle) and miR-215 (intestine) to be tissue-enriched, as reported for other species. Profiling of additional miRNAs across different tissues identified the human homologue, miR-802, as highly enriched specifically in liver. Conclusions These results provide novel information on the source of bovine circulating miRNAs and could significantly facilitate the identification of production-relevant tissue biomarkers in livestock. In particular, miR-802, a circulating miRNA not previously identified in cattle, can reportedly regulate insulin sensitivity and lipid metabolism, and thus could potentially provide a specific biomarker of liver function, a key parameter in the context of post-partum negative energy balance in dairy cows
    • …
    corecore