
Working title: Target Repurposing for Neglected Diseases 1 
Article type - Review  2 
Authors: 3 

Michael P. Pollastri, PhD* 4 
Associate Professor  5 
Northeastern University 6 
Department of Chemistry and Chemical Biology 7 
Hurtig 102 8 
360 Huntington Avenue 9 
Boston, MA 02115 10 
617-373-2703 11 
m.pollastri@neu.edu 12 
 13 
Robert K. Campbell, PhD 14 
Adjunct Scientist 15 
The Josephine Bay Paul Center in Molecular Biology and Evolution 16 
The Marine Biological Laboratory 17 
7 MBL Street 18 
Woods Hole, MA 02543 19 
bcampbell@mbl.edu 20 

 21 

Key Terms. 22 

• Disability Adjusted Life Year (DALY) – a metric developed by the World Health 23 
Organization that describes Global disease burden by combining years of life lost due to 24 
death, and years of life lost due to less-than-full health. 25 

• Druggability – a measure of a target’s ability to be effectively targeted by a drug-like 26 
molecule.  27 

• Human African trypanosomiasis has a health impact of 1.5 million DALY, approximately 28 
equivalent to prostate cancer (1.6 million DALY), yet has a small fraction of new drugs in 29 
any stage of discovery and development. 30 

 31 

 32 

Abstract. Infectious diseases are an enormous burden to global health, and since drug 33 

discovery is costly, those infectious diseases that affect the developing world are often not 34 

pursued by commercial drug discovery efforts. Therefore, pragmatic means by which new 35 

therapeutics can be discovered are needed. One such approach is target repurposing, where 36 

pathogen targets are matched with homologous human targets that have been pursued for drug 37 

discovery for other indications. In many cases, the medicinal chemistry, structural biology, and 38 

biochemistry knowledge around these human targets can be directly repurposed to launch and 39 

accelerate new drug discovery efforts against the pathogen targets. This article describes the 40 
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overarching strategy of target repurposing as a tool for initiating and prosecuting neglected 41 

disease drug discovery programs, highlighting this approach with three case studies. 42 

Introduction. Infectious diseases are the biggest cause of human death and disability [101

1

]. 43 

The World Health Organization reported that nearly 400 million years of healthy life were lost to 44 

infections in 2004 - twice the number due to any other cause and five times the number due to 45 

cancer. Despite the acute need for new drugs, there are many hurdles to overcome to make 46 

such anti-infective medications a reality. Drug discovery and development is expensive, and 47 

much of the work has to be done in technology-rich laboratories and clinics. It typically costs 48 

hundreds of millions of dollars and takes over a decade to advance from invention to market [ ]. 49 

Drug discovery and development is also risky. Only one out of every five to twenty of the 50 

candidate drugs entering clinical trials reaches approval and clinical use. Failure rates for anti-51 

infective drugs exceed 70% in clinical trials [2].   For any indication, even drug candidates with 52 

good efficacy and safety may still be abandoned if they fall too far behind the launch of 53 

competitor drugs into the market, or if there is little expectation of improvement of standard-of-54 

care at the time of launch [3]. While many important contributions to drug discovery are made 55 

from academic and government laboratories, the bulk of the expense (and risk) in taking an 56 

unproven compound through development is largely borne by companies competing for a share 57 

of the $600 billion global market for pharmaceuticals. The commercial value of this market is 58 

centered in North America, Europe, and Japan.  59 

The WHO also reports that tuberculosis, malaria, and a group of other tropical diseases are 60 

among the most prevalent of these infections [102

Some of these conditions, such as respiratory infections, are often manageable with existing 67 

drugs and supportive care. However, the lack of access to these drugs and care has resulted in 68 

these diseases being a persistent cause of death and disability in impoverished populations. 69 

Improvements in treatment availability should be a priority for these illnesses. Conversely, there 70 

are other infectious diseases for which new drug discovery is needed to achieve improved 71 

outcomes. Drivers for new drug discovery include known drug resistance (malaria, tuberculosis), 72 

]. Several of these tropical diseases are 61 

summarized in the Table, sorted in order of Disability Adjusted Life Years (DALYs), a metric of 62 

global burden of disease that describes the impact of a specific condition on quality and length 63 

of life. To provide a frame of reference, also included in the table are two conditions (lung and 64 

prostate cancer) that attract significant research and development resources for delivery to 65 

patients in the developed world. 66 



reliance on a single treatment – and the consequence if resistance were to develop against this 73 

treatment (schistosomiasis), inadequate drug safety (African trypanosomiasis), and inadequate 74 

drug efficacy (Chagas disease and visceral leishmaniasis). 75 

 76 

Table 1. Summary of the impact of the top causes of death and disability, with a primary focus 77 

on NTDs. 78 

  Approximate numbers of candidatesb 

Disease DALYsa 
(millions)  

PCD Phase I Phase II Phase III 

Lower respiratory infections 94 6 c 0 c 1 c 0 c 
HIV/AIDS 59 81c 19 c 59 c 8 c 
Tuberculosis 34.7 23 2 5 0 
Malaria 34.6 9 0 5 3 
Leishmaniases 2.3 6 0 1 1 
Schistosomiasis 2.1 0 0 0 0 
African trypanosomiasis 1.5 3 0 1 0 
Chagas disease 0.7 1 0 0 0 

Lung cancer 11.2 28 10 30 9 
Prostate cancer 1.6 34 11 30 5 

a. 2004 statistics [101, 102]. b Data from PharmaProjects V5.2 database (Informa Healthcare, London, 79 

UK) and ClinicalTrials.gov, accessed 13 Nov 2008 or c. 10 May 2011. 80 

The disproportionate impact of R&D Costs on NTD drug discovery.  81 

These factors contribute to two different worlds of drug discovery. Diseases that are leading 82 

causes of mortality and morbidity in Western societies may be targeted with dozens, or even 83 

hundreds, of discovery projects and drug candidates.  In contrast, some of the global infectious 84 

diseases are targeted by only a handful of drug candidates. Even the strongest of the infectious 85 

disease pipelines has only a fifth the number of candidates as for individual cancer indications, 86 

and many have only one, or none (Table). For example, in comparing human African 87 

trypanosomiasis (HAT, 1.5 million DALYs) and prostate cancer (1.6 million DALYs), one can 88 

see that while there are approximately eighty candidate compounds ranging from preclinical 89 

development through Phase II clinical trials for prostate cancer, there are only four for HAT. 90 

Considering the failure rates typical in drug discovery it is clear that there are too few initiatives 91 

to expect success against the global infectious diseases [103].  This consequence of the two 92 



worlds of drug discovery is illustrated by the observation that of 1,393 new medicines that 93 

reached the market between 1975 and 2000 only 1% were directed at malaria, tuberculosis, or 94 

tropical diseases [4]. 95 

A preclinical optimization gap further restricts drug discovery success. Irrespective of the 96 

disease target, in order to be considered a candidate drug a molecule must typically be effective 97 

in disease models, have appropriate stability and tissue penetration adequate to achieve 98 

therapeutic levels to patients, have low toxicity, and be suitable for cost-effective manufacturing. 99 

Molecules identified from screening almost never have these collective properties.  Instead, 100 

suitable drug candidates are invented through the optimization of stability, solubility, potency, 101 

selectivity, pharmacokinetics, pharmacodynamics, and toxicity of compounds obtained from 102 

screening.  This optimization costs millions dollars and has historically been done in drug 103 

companies. It requires expertise in medicinal and formulation chemistry, pharmacology, and 104 

toxicology, plus the synthesis of large quantities of the chemical compounds of interest and 105 

extensive in vivo experimentation. Teams of chemists work with pharmacologists and 106 

toxicologists to design and synthesize variations of active molecules in an effort to achieve 107 

optimal activity.  Even with strong teams only a tiny fraction (<0.1%) of molecules identified in 108 

early stages of drug discovery can be optimized into compounds that merit advancement to 109 

clinical trials.  This results in an optimization gap from screen to candidate that claims the great 110 

majority of early stage discovery projects (Figure 1). Optimization projects for malaria, 111 

tuberculosis, and other tropical diseases typically have just one or two chemists [5], a quarter or 112 

less of the chemistry support typically provided to projects in companies.  This makes success 113 

even less likely and the timelines longer. 114 

115 



Figure 1 – Location of the gap in optimization resource and expertise in NTD drug discovery. 116 

Percentages of compounds proceeding to the next step are shown in parentheses.   117 

 118 

A further challenge to any drug discovery program is the assumption that a proposed 119 

therapeutic target is “druggable”, meaning that is can be manipulated for therapeutic effect by 120 

drug-like molecules [6]. Genome sequencing and biochemistry efforts have uncovered many 121 

pathogen-specific enzyme targets that could be essential to parasite survival [7-9]. This would 122 

seem highly desirable from a drug discovery perspective, as the presumed challenges of 123 

attaining selectivity for the pathogen target over host targets would be reduced or eliminated. 124 

However, not all proposed therapeutic targets are druggable. Target families proven to be 125 

druggable in successful human drug discovery programs should have reduced risk that the 126 

parasite target will not be druggable. 127 

In sum, in order to improve drug pipelines for neglected tropical diseases it will be necessary to 128 

overcome the enormous challenges inherent in drug discovery (and exacerbated in the 129 

resource-poor area of NTD drug discovery). In particular, approaches to drug discovery in this 130 

field must come up with ways to facilitate the bridging of the optimization gap that has impeded 131 

the advancement of compounds from screen to drug [5]. One of these approaches can be target 132 

repurposing.  133 

Target repurposing.  134 

Target repurposing exploits the facts that (1) many drugs bind specific proteins and (2) industry 135 

discovery is protein target focused.  Evolution has resulted in similar protein designs between 136 

organisms, often with conserved features of binding and active sites.  As a result, drug-like 137 

chemicals can often bind proteins that are structurally related to the targets to which these 138 

chemicals were originally designed to bind.  If the related protein is itself a potential drug target, 139 

then this cross-binding can guide repositioning of a discovery program from one disease to 140 

another. Genomes of many pathogens have now been fully sequenced, permitting the 141 

prediction and confirmation of parasite protein sequences, and prioritization of putative targets 142 



based on sequence similarity to human targets. The pharmaceutical industry has produced 143 

hundreds of thousands of drug-like compounds against several thousand drug targets and many 144 

of these programs include compounds that have successfully passed the initial pharmacology 145 

and toxicology tests associated with candidate optimization. While not all druggable human drug 146 

targets are present in parasitic pathogens, use of these compounds and knowledge for those 147 

targets that do overlap is a proven strategy that can enable a new drug discovery program to 148 

quickly obtain drug candidates. 149 

A concern inherent in the target repurposing approach is the risk that compounds derived from 150 

medicinal chemistry programs against human targets may have toxic effects mediated through 151 

the same or related human targets. While drugs developed for use in developed countries may 152 

have side-effects that are considered acceptable because they can be readily managed in a 153 

strong supportive care setting, use of these same products could be severely problematic in 154 

regions that lack easy access to supportive care. Nonetheless, given the acute (and sometimes 155 

fatal) pathology of some parasitic diseases, some off-target effects may prove to be acceptable 156 

risks. For example, the repurposing of trypanosomal phosphodiesterases (PDEs) represent an 157 

ongoing approach for discovery of drugs for African sleeping sickness and Chagas’ disease [10-158 

12], two indications for which drugs are either highly toxic, or of modest efficacy. The most 159 

closely homologous human enzyme is PDE4, inhibition of which has been linked to emesis. If 160 

achieving selectivity between host and pathogen targets proves to be impossible, then one must 161 

thus consider whether such a side-effect profile is acceptable given the current state of the 162 

therapeutics for these diseases. 163 

The identification of pathogen proteins related to known drug targets can be aided by databases 164 

such as TDR Targets DB (www.tdrtargets.org). The availability of these resources make it 165 

possible to consider a comprehensive repositioning of existing drug discovery expertise against 166 

pathogens causing malaria, tuberculosis, and the other tropical diseases defined by WHO as 167 

most in need of new drug treatments.  The scene has thus been set to permit an integration of 168 

past research investments in drug discovery with major unmet needs in global health.  169 

We review below three examples that illustrate application of the target repurposing approach to 170 

bring new therapeutics into clinical research and practice. 171 

HIV protease inhibitors. A particularly striking example of how the repositioning of chemistry 172 

expertise can favorably impact drug discovery was the rapid development of treatments for HIV 173 

http://www.tdrtargets.org/�


infection following the sequencing of the virus genome in 1985. The rapid identification of 174 

clinically suitable anti-HIV protease inhibitors in the 1990s was built on prior chemistry expertise 175 

gained with human aspartic proteases. This approach of “repurposing” discovery chemistry 176 

expedited the invention of inhibitors with drug-like potency, selectivity, and safety. It helped to 177 

de-risk these projects and deliver drug candidates for AIDS just ten years after the 178 

determination of the HIV genome. 179 

The first step was to recognize the presence of candidate drug targets in the HIV genome, a 180 

task made possible by extensive investment in HIV genome sequencing and cellular biology. 181 

One of the candidate targets identified was an aspartic protease predicted to share a common 182 

biochemical mechanism with a family of human proteases that had already been targeted for 183 

drug discovery. Analysis of the HIV genome revealed a protein with a short motif of amino acids 184 

known to be a common feature of aspartic acid proteases. The prediction that HIV utilized an 185 

aspartic protease in its life cycle was confirmed by genetic studies showing that conversion of 186 

the active site aspartic acid to an asparagine resulted in deficits in the proteolytic processing of 187 

HIV pre-proteins [13]. This also resulted in a block to the production of infectious virus. 188 

Subsequent determination of the X-ray crystallographic structure of the HIV protease confirmed 189 

the prediction that is was a homolog of known aspartic proteases, raising the possibility anti-HIV 190 

drug discovery could be facilitated with knowledge from members of this enzyme family that had 191 

previously been targeted by medicinal chemistry [14, 15]. 192 

One of the best-studied human aspartic acid proteases at the time was renin, an enzyme that 193 

triggers a cascade of reactions that result in an elevation of blood pressure. Drugs acting on a 194 

downstream enzyme in this cascade, angiotensin-converting enzyme (ACE), had already 195 

become well-established as safe and effective treatments for hypertension. Seeing the success 196 

of ACE inhibitors, numerous companies had explored targeting renin as a further means to 197 

control blood pressure. However, while many renin inhibitors had been found, none had the 198 

desired combination of oral bioavailability and selectivity. It seemed the medicinal chemistry 199 

attack on renin was a dead end. 200 

The speed with which HIV spread in the US and other countries fostered a strong mobilization 201 

of drug discovery interest. It was soon realized that some inhibitors of renin and other human 202 

aspartic proteases could also inhibit the HIV protease [16]. This group took an approach to 203 

optimize potency and selectivity of transition-state mimetics by exploiting differences between 204 

human and HIV protein substrates near the site of cleavage [17]. Human substrates of aspartic 205 



proteases are nearly devoid of proline residues adjacent to the cleavage site, while many of the 206 

HIV substrates, such as the pol protein precursor, are enriched for proline residues.  Inhibitor 207 

analogs could be made more selective for the HIV protease by incorporating features of a 208 

proline side chain in the position occupied by proline in authentic substrates. This work led to 209 

saquinavir, the first protease inhibitor approved by FDA for treatment of HIV infection (Figure 210 

2A). This 1995 product approval came just 10 years after the initial sequencing of the HIV 211 

genome. 212 

Several other groups jump-started their HIV drug discovery programs by screening collections 213 

of renin inhibitors.  At Merck, Sharp and Dohme this screen led to the early identification of 214 

potent inhibitors that could block HIV production in cells [18]. However, these early compounds 215 

had poor solubility that precluded their usefulness as drugs. Several additional rounds of 216 

medicinal chemistry were required to achieve a potent, selective, and orally active drug with 217 

pharmacokinetics suitable for the clinic [19] (Figure 2B). 218 

219 



Figure 2. Evolution of HIV-1 protease inhibitors 220 

 221 

A third approach to facilitate discovery of potent and selective drugs against HIV exploited the 222 

fact that the active site of aspartic proteases lies at the interface of two domains [20]. In the 223 

human aspartic proteases these domains are non-identical, resulting in a non-symmetrical 224 

active site.  In contrast, the HIV protease is a homodimer of two identical single domain 225 

subunits, resulting in a symmetrical active site that has different binding properties than the 226 

human enzymes. Such a site can be targeted by ligands that have a two-fold axis of symmetry, 227 

while the human aspartic proteases will not recognize such ligands. This work led to highly 228 

selective inhibitors, but these initial compounds had poor oral bioavailability. This problem was 229 



then targeted by optimization efforts, resulting in ritonavir (Figure 2C) [21], approved by the 230 

FDA in 1996.   231 

Thus, the early invention of HIV protease inhibitors was thus aided by the knowledge of 232 

medicinal chemistry and enzyme mechanisms that had been gained with other aspartic 233 

protease targets, in particular renin.  This contributed to the rapid progression of protease 234 

inhibitor drug candidates to the clinic, and the creation of a rich drug pipeline for HIV infection. 235 

Several additional benefits came from this broad mobilization of medicinal chemistry against the 236 

HIV protease. One was the rapid delivery of multiple different products to the market. In the next 237 

few years it was found that combinations of these products were particularly effective at blunting 238 

the ability of the virus to escape from inhibition. A second, unexpected benefit was the finding 239 

that one of the inhibitors – ritonavir - was highly effective at preventing the biotransformation of 240 

other protease inhibitors by cytochrome P450-3A4 [22]. This provided significant plasma 241 

concentration levels of each inhibitor without affecting the plasma concentrations of ritonavir, 242 

enhancing the therapeutic benefit of such drug cocktails. This has led to widespread use of 243 

ritonavir as a potentiator of other HIV protease inhibitors due to its favorable influence on their 244 

systemic exposure. 245 

Eflornithine. One of two front-line treatments for human African trypanosomiasis (HAT), 246 

eflornithine is a suicide inhibitor of ornithine decarboxylase that was initially studied as a human 247 

cancer therapeutic. The drug interferes with polyamine biosynthetic pathways that are involved 248 

in generation of small amine intermediates that are incorporated into nucleic acid and amino 249 

acid synthesis: typically spermine, spermidine, and putrescine. The rate limiting step of this 250 

reaction sequence is catalyzed by ornithine decarboxylase, and the ornithine analog α-251 

difluoromethylornithine (DFMO, eflornithine) is a suicide inhibitor of this enzyme. (For a review 252 

of polyamine synthesis inhibition as a therapeutic approach, see [23]). Unfortunately the drug 253 

was found to have poor efficacy in cancer, and the clinical development was stopped. However, 254 

it was recognized by others that trypanosomes utilize a homologous ornithine decarboxylase 255 

enzyme. This led to the hypothesis that eflornithine might interrupt polyamine synthesis in the 256 

parasite, and be useful as a trypanocidal drug. This hypothesis was confirmed in cellular and in 257 

mouse infection experiments [24], and the mechanism of action was subsequently supported by 258 

X-ray crystallographic analysis [25]. The compound was shown to clear T. brucei gambiense 259 

infections in humans [26], though the drug is not as effective against the more virulent 260 

rhodesiense strain. This is thought to be due primarily to the more rapid regeneration of 261 



ornithine decarboxylase in T. b. rhodesiense, providing this strain with a means by which to 262 

overcome drug treatment.[27] Eflornithine remains one of the two front-line therapeutics for 263 

Stage II T. b. gambiense infections, and is the most recently approved drug for this disease 264 

(1990). From a target repurposing, perspective, the difference in efficacy between pathogen 265 

strains would not have been obvious based on sequence homology, and thus the eflornithine 266 

case underscores a further need to understand the molecular biology of the parasite targets, in 267 

addition to their structural homology to human targets. It is worth noting that, in a second 268 

repurposing of this drug, eflornithine has also been approved as a topical agent for treatment of 269 

female facial hirsutism [28], also by modulating polyamine biosynthesis.  270 

N-myrisoyl transferase. A key post-translational modification of proteins is catalyzed by a 271 

myristoyl-CoA-protein N-myristoyltransferase (NMT). This enzyme transfers a molecule of 272 

myrisitc acid to N-terminal glycine residues, resulting in membrane-targeting of the modified 273 

protein [29]. Inhibitors of this target class have been explored as therapeutics for cancer and 274 

fungal diseases [30, 31]. The essentiality of the homologous enzyme in T. brucei (TbNMT) has 275 

been demonstrated via RNA interference [32], and the TbNMT enzyme displays 55% identity to 276 

human NMT2. This suggested that TbNMT was a tractable drug target for HAT.  277 

Despite the existence of chemical matter against the human homologue, Frearson et al. elected 278 

to perform a high-throughput screen of 62,000 compounds against TbNMT, resulting in a 2 µM 279 

hit compound DDD64558 (Figure 3) [33], which had modest selectivity over the human 280 

homolog. The optimization process (generating over 200 analogs) resulted in a 1000-fold 281 

improvement in potency, providing DDD65646.  Though this optimized compound was non-282 

selective over human NMT, this compound showed high activity against T. brucei cells with 283 

greater than 200-fold selectivity over human cells and in vivo activity, clearing acute mouse 284 

infections of T. brucei rhodesiense and extending survival of infected animals. The mechanism 285 

of action was confirmed as involving TbNMT based on reduction of [3H]-myristoylated proteins, 286 

and rescue of trypanosomes by overexpression of TbNMT. Furthermore, binding to the 287 

homologous Leishmania major enzyme LmNMT (95% identity in the binding site region) was 288 

confirmed crystallographically.  289 

 290 

291 



Figure 3. The optimized TbNMT inhibitor DDD65656 resulting from the initial HTS hit 292 

DDD64558. 293 

 

 294 

Notably, while the optimization of the compounds has led to a much-reduced selectivity of the 295 

drug for TbNMT over the host enzyme, the cellular selectivity is quite good  Thus, while further 296 

improvements are needed for this series of compounds to achieve CNS exposure and a greater 297 

selectivity over the human NMT, this case study is a promising success illustrating target 298 

repurposing. 299 

Resources for target repurposing. The target repurposing approach is strongly enabled by a 300 

number of existing resources. The identification of target homologs in pathogens, and candidate 301 

compounds for testing, is aided by the availability of annotated pathogen genome databases, 302 

such as PlasmoDB [34] pathogen target bioinformatics resources such as TDR Targets [35], 303 

public data repositories of screening data, such as PubChem (http://pubchem.ncbi.nlm.nih.gov), 304 

Collaborative Drug Discovery (www.colllaborativedrug.com), ChEMBL (formerly StARLite, 305 

https://www.ebi.ac.uk/chemb), and BindingDB (www.bindingdb.org), and structural biology 306 

resources such as the Protein Data Bank (www.pdb.org). The implementation of chemical 307 

validation studies is aided by purchasable compound collections, such as the Library of 308 

Pharmacologically Active Compounds (LOPAC, Sigma-Aldrich) and the NIH Clinical Collection 309 

(www.nihclinicalcollection.com).  310 

Future Perspective. As illustrated through the examples above, repositioning of molecules and 311 

target knowledge from existing drug discovery programs can facilitate rapid and cost-effective 312 
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advancement of steps to augment the invention of new therapeutics for emerging and neglected 313 

diseases (Figure 1). This repositioning can also lower barriers for commercial stakeholders to 314 

participate infectious disease drug discovery through the leveraging of compounds (and 315 

expertise) from their past research investments. Extension of target repurposing should help the 316 

NTD drug discovery effort benefit from the extensive knowledge derived from industrial drug 317 

discovery, efforts – efforts for which the research investment of the US pharmaceutical industry 318 

alone was $67.4 billion in 2010 [104

However, despite the identification of numerous target matches that could be used to drive 320 

repurposing of drug discovery for neglected diseases, progress has still been slow. Indeed, two 321 

of the specific examples were cited above are two decades old. Why has this approach not 322 

been more widely exploited? 323 

]. 319 

We believe one of the major, as yet unfilled gaps, is the lack of validation evidence, especially 324 

pharmacological validation. To fill this gap there is a growing number of projects applying 325 

existing compounds as toolkits with which to assess the tractability of target homologs for 326 

disruption of pathogen viability – for example with phosphodiesterases [36, 37], kinases ([38, 327 

39], and other targets that have a rich medicinal chemistry history. The validation of targets and 328 

pathways with small molecule agents, in concert with genetic evidence, can provide a higher 329 

level of certainty regarding the likelihood of these targets’ being converted to fruitful therapeutic 330 

approaches.  331 

Some additional resources could be highly beneficial to support these efforts. For example, 332 

Chong and Sullivan calculate that there are approximately 8,900 unique drug molecules that are 333 

either in clinical use or progressed through clinical trials that represent potentially strong ligand 334 

repurposing starting points [40]. Citing their own hosted Clinical Compound Repository at Johns 335 

Hopkins University as a model, the authors propose that a modest investment of public-private 336 

funding (<$10 million) in an expanded collection that contains these 8,900 compounds could 337 

strongly enable target repurposing by enabling screening campaigns against this collection. In 338 

addition, availability of these compounds as singletons to test specific hypotheses for target 339 

repurposing, could essentially bypass the time-consuming effort of de novo synthesis that is 340 

required to benchmark human-targeted compounds against homologous pathogen targets. As a 341 

result of these synthetic challenges, access to small molecules is frequently a limiting step to 342 

launching such initiatives. 343 



An additional, potentially impactful addition to the public domain drug discovery efforts would be 344 

ready access to core chemistry, molecular modeling, drug metabolism profiling and 345 

pharmacokinetic resource. This could be similar to that which is already in place for X-ray 346 

crystallography (the Structural Genomics Consortium). In such a model, a queue of synthesis 347 

programs is pursued upon request, with the goal to provide key resource for free-of-charge to 348 

initiate target repurposing programs. Such outputs of this core resource could contain key 349 

analogs for screening, small scale re-synthesis of known active agents, and in vitro profiling of 350 

physicochemical and metabolic properties that can be directive of optimization efforts. The data 351 

generated from such experiments can strongly inform new projects against emerging parasite 352 

targets, and provide justification in these programs for further investment from funding agencies. 353 

Importantly, such a core resource could provide pivotal guidance to investigators who are 354 

entering into early stages of drug target validation and optimization. Notably, the National 355 

Institutes of Health have implemented the Therapeutics for Rare and Neglected Disease 356 

(TRND) program, the goal of which is to provide the rare and neglected disease research 357 

community access to drug discovery expertise and resource. 358 

Summary. The process for target repurposing can be implemented in a variety of ways, but 359 

they all rely on the following premises: First, parasites express essential targets that have 360 

human homologs. Second, some fraction of these human homologs has been pursued by the 361 

drug discovery industry, and therefore lead matter must exist. Third, assessment of this lead 362 

matter against parasite homologs should uncover chemical matter that can serve as tools to 363 

validate the target as an antiparasitic approach, and as leads for further optimization towards 364 

leads and clinical candidates. This approach can seed new drug discovery and/or development 365 

programs against the parasite targets without costly HTS campaigns, and with reduced risk of 366 

chemotype attrition due to poor physicochemical properties. 367 

In applying these premises, as typified by the few examples described in this article, it is clear 368 

that a target repurposing approach can be a faster, more cost effective method for drug 369 

discovery over existing “traditional” de novo drug discovery approaches.  370 
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Executive summary. 375 

• Though there is a significant impact on global health, neglected diseases are those that 376 
affect the poorest parts of the world, with little research and development effort 377 
expended on discovery of new drugs 378 

• The high cost and attrition rate of new drug discovery approaches further restricts the 379 
pace of NTD drug discovery 380 

• Many pathogen genomes have been elucidated, enabling bioinformatic matching of 381 
targets between pathogens and mammals, enabling the knowledge and compounds for 382 
these targets to be repurposed for anti-infective agents. This is referred to as “target 383 
repurposing” 384 

• Three programs are highlighted for their varying levels of success in applying the 385 
concepts of Target Repurposing: HIV protease inhibitors, eflornithine, and N-myrtistoyl 386 
transferases. 387 

 388 
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