2,851 research outputs found

    Guardians of public morals: an examination of the effect of Victorianism on literary studies

    Get PDF
    For the purposes of this study, we must seek a narrow definition of Victorianism and describe it as that sense of moral seriousness which all Victorians shared or were expected to share. In an age which possessed no natural unity, and which experienced constant change, this one characteristic stood out as a cohesive force. Known by a multitude of synonyms--respectability, prudishness, propriety--Victorianism in this sense has been used to indicate that moral attitude which lay at the base of the strict standards we still think of as typical of nineteenth century Britain

    Symmetry Decomposition of Chaotic Dynamics

    Full text link
    Discrete symmetries of dynamical flows give rise to relations between periodic orbits, reduce the dynamics to a fundamental domain, and lead to factorizations of zeta functions. These factorizations in turn reduce the labor and improve the convergence of cycle expansions for classical and quantum spectra associated with the flow. In this paper the general formalism is developed, with the NN-disk pinball model used as a concrete example and a series of physically interesting cases worked out in detail.Comment: CYCLER Paper 93mar01

    Echoes in classical dynamical systems

    Full text link
    Echoes arise when external manipulations to a system induce a reversal of its time evolution that leads to a more or less perfect recovery of the initial state. We discuss the accuracy with which a cloud of trajectories returns to the initial state in classical dynamical systems that are exposed to additive noise and small differences in the equations of motion for forward and backward evolution. The cases of integrable and chaotic motion and small or large noise are studied in some detail and many different dynamical laws are identified. Experimental tests in 2-d flows that show chaotic advection are proposed.Comment: to be published in J. Phys.

    Design diversity: an update from research on reliability modelling

    Get PDF
    Diversity between redundant subsystems is, in various forms, a common design approach for improving system dependability. Its value in the case of software-based systems is still controversial. This paper gives an overview of reliability modelling work we carried out in recent projects on design diversity, presented in the context of previous knowledge and practice. These results provide additional insight for decisions in applying diversity and in assessing diverseredundant systems. A general observation is that, just as diversity is a very general design approach, the models of diversity can help conceptual understanding of a range of different situations. We summarise results in the general modelling of common-mode failure, in inference from observed failure data, and in decision-making for diversity in development.

    Comparison with excavated and metal-detected finds in the wider region

    Get PDF
    When Roman objects are discovered in rivers they are commonly interpreted as accidental losses or as rubbish deposits revealed by fluvial erosion; this is in contrast to prehistoric assemblages, which are often seen as ritual offerings

    Statistical analysis of coherent structures in transitional pipe flow

    Get PDF
    Numerical and experimental studies of transitional pipe flow have shown the prevalence of coherent flow structures that are dominated by downstream vortices. They attract special attention because they contribute predominantly to the increase of the Reynolds stresses in turbulent flow. In the present study we introduce a convenient detector for these coherent states, calculate the fraction of time the structures appear in the flow, and present a Markov model for the transition between the structures. The fraction of states that show vortical structures exceeds 24% for a Reynolds number of about Re=2200, and it decreases to about 20% for Re=2500. The Markov model for the transition between these states is in good agreement with the observed fraction of states, and in reasonable agreement with the prediction for their persistence. It provides insight into dominant qualitative changes of the flow when increasing the Reynolds number.Comment: 11 pages, 26 (sub)figure

    Semiclassical cross section correlations

    Full text link
    We calculate within a semiclassical approximation the autocorrelation function of cross sections. The starting point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with relative weights determined by classical dynamics. We show how the random matrix result can be obtained if the operator approaches a projector onto a single initial state. The expressions are verified in calculations for the kicked rotor.Comment: 6 pages, 2 figure

    Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums

    Full text link
    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Pade approximant to the periodic orbit sums. The Pade approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let

    Approach to ergodicity in quantum wave functions

    Full text link
    According to theorems of Shnirelman and followers, in the semiclassical limit the quantum wavefunctions of classically ergodic systems tend to the microcanonical density on the energy shell. We here develop a semiclassical theory that relates the rate of approach to the decay of certain classical fluctuations. For uniformly hyperbolic systems we find that the variance of the quantum matrix elements is proportional to the variance of the integral of the associated classical operator over trajectory segments of length THT_H, and inversely proportional to TH2T_H^2, where TH=hρˉT_H=h\bar\rho is the Heisenberg time, ρˉ\bar\rho being the mean density of states. Since for these systems the classical variance increases linearly with THT_H, the variance of the matrix elements decays like 1/TH1/T_H. For non-hyperbolic systems, like Hamiltonians with a mixed phase space and the stadium billiard, our results predict a slower decay due to sticking in marginally unstable regions. Numerical computations supporting these conclusions are presented for the bakers map and the hydrogen atom in a magnetic field.Comment: 11 pages postscript and 4 figures in two files, tar-compressed and uuencoded using uufiles, to appear in Phys Rev E. For related papers, see http://www.icbm.uni-oldenburg.de/icbm/kosy/ag.htm
    corecore