23,563 research outputs found

    Searching for annihilation radiation from SN 1006 with SPI on INTEGRAL

    Get PDF
    Historical Type Ia supernovae are a leading candidate for the source of positrons observed through their diffuse annihilation emission in the Galaxy. However, search for annihilation emission from individual Type Ia supernovae has not been possible before the improved sensitivity of \integral. The total 511 keV annihilation flux from individual SNe Ia, as well as their contribution to the overall diffuse emission, depends critically on the escape fraction of positrons produced in 56^{56}Co decays. Late optical light curves suggest that this fraction may be as high as 5%. We searched for positron annihilation radiation from the historical Type Ia supernova SN 1006 using the SPI instrument on \integral. We did not detect significant 511 keV line emission, with a 3σ\sigma flux upper limit of 0.59 x 104^{-4} ergs cm^-2 s^-1 for \wsim 1 Msec exposure time, assuming a FWHM of 2.5 keV. This upper limit corresponds to a 7.5% escape fraction, 50% higher than the expected 5% escape scenario, and rules out the possibility that Type Ia supernovae produce all of the positrons in the Galaxy (~ 12% escape fraction), if the mean positron lifetime is less than 105^{5} years. Future observations with \integral will provide stronger limits on the escape fraction of positrons, the mean positron lifetime, and the contribution of Type Ia supernovae to the overall positron content of the Galaxy.Comment: 3 pages, 2 figures, accepted for publication in ApJ

    The curious time lags of PG 1244+026: Discovery of the iron K reverberation lag

    Get PDF
    High-frequency iron K reverberation lags, where the red wing of the line responds before the line centroid, are a robust signature of relativistic reflection off the inner accretion disc. In this letter, we report the discovery of the Fe K lag in PG 1244+026 from ~120 ks of data (1 orbit of the XMM-Newton telescope). The amplitude of the lag with respect to the continuum is 1000 s at a frequency of ~1e-4 Hz. We also find a possible frequency-dependence of the line: as we probe higher frequencies (i.e. shorter timescales from a smaller emitting region) the Fe K lag peaks at the red wing of the line, while at lower frequencies (from a larger emitting region) we see the dominant reflection lag from the rest frame line centroid. The mean energy spectrum shows a strong soft excess, though interestingly, there is no indication of a soft lag. Given that this source has radio emission and it has little reported correlated variability between the soft excess and the hard band, we explore one possible explanation in which the soft excess in this source is dominated by the steep power-law like emission from a jet, and that a corona (or base of the jet) irradiates the inner accretion disc, creating the blurred reflection features evident in the spectrum and the lag. General Relativistic ray-tracing models fit the Fe K lag well, with the best-fit giving a compact X-ray source at a height of 5 gravitational radii and a black hole mass of 1.3e7 Msun.Comment: 6 pages, 6 figures, resubmitted to MNRAS after moderate revisions. This paper focuses on the discovery of the Fe K reverberation lag in PG 1244+026. We point the interested reader to Alston, Done & Vaughan (See today: arXiv:submit/0851673), which focuses on the soft lags in this sourc

    Dynamics of muskox groups in northeastern Alaska

    Get PDF
    Group size and stability was studied in a population of re-established muskoxen (Ovibos moschatus) in northeastern Alaska by re-locating radio-collared animals. Mixed-sex groups (cows, calves, sub-adults and often adult bulls) ranged in size from 2-118 with a mean of 19.2. Almost 60 % of all mixed-sex groups contained 5¬19 individuals. Solitary cows were seen infrequently. Adult bulls were observed in mixed-sex groups, in bull groups or alone. Bull groups averaged 3.9 and ranged in size from 2 to 12. Thirty percent of all adult bulls seen outside mixed-sex groups were solitary animals. Mixed-sex groups were significantly smaller in summer/ rut Quly-September) than in midwinter Qanuary-March), spring/calving (April-June) and early winter (October-November). Mean group size was 12.2 in August compared with 23.6 in February. In August, during the rut, numbers of small groups (2-14) increased, while numbers of medium-sized (15-29) and large groups (> 29) decreased. Bull groups were significantly larger in spring/calving than during other seasons. The ratio of single bulls to bull groups was less than 0.30 in winter, increased in June, and reached a maximum during the rut in August when more than 2 single bulls were seen for every bull group. Group size and individuals within a group changed frequently. This fluid social system provides a balance between protection from predators, efficient food acquisition and the formation of harems during the rut

    Compact Radio Cores in Seyfert Galaxies

    Full text link
    We have observed a sample of 157 Seyfert galaxies with a 275 km baseline radio interferometer to search for compact, high brightness temperature radio emission from the active nucleus. We obtain the surprising result that compact radio cores are much more common in Seyfert 2 than in Seyfert 1 galaxies, which at first seems to be inconsistent with orientation unification schemes. We propose a model, involving optical depth effects in the narrow-line region, which can reconcile our result with the standard unified scheme. (Accepted for publication in ApJ 1994 Sep 10)Comment: 21 pages and 7 figures, uuencoded tar-compressed postscript files, ATP18

    Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements

    Fundamental studies of AVC with actuator dynamics

    Get PDF
    IMAC XXXIV: 34th Conference and Exposition on Structural Dynamics of Multiphysical Systems, 25 - 28 January 2016, Orlando, Florida, USAThis is the author accepted manuscript. The final version is available from the publisher.Active vibration control (AVC) of human-induced vibrations in structures with proof-mass actuators has been subject to much research in recent years. This has predominantly focussed on footbridges and floors and there is some evidence that this research is paving the way for commercial installations of AVC where traditional vibration control measures are not appropriate. However, the design of an AVC system is a complex task because of the influence of actuator dynamics, the contributions from higher frequency modes of vibration and the effect of low and high pass filters that are required to make the control algorithm implementable. This puts the AVC design process beyond the abilities of the vast majority of civil design engineers, even at a scheming stage to approximate what sort of reductions could be achieved by such a system. This paper considers a generalised system and investigates what sort of performance can be achieved in theory by a perfect AVC system, then considers the added complexity of actuator dynamics to demonstrate how this degrades the performance from optimal.The authors would like to acknowledge the financial support given by the UK Engineering and Physical Sciences Research Council through a responsive mode grant entitled Active Control of Human-Induced Vibration (Ref: EP/H009825/1) and Leadership Fellowship grant entitled Advanced Technologies for Mitigation of Human-Induced Vibration (Ref: EP/J004081/1)
    corecore