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ABSTRACT 

Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil 

engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration 

control studies, most past researches have focused on floors and footbridges and the widely used linear controller 

implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to 

enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of 

the structures in which the active vibration control systems have been implemented.  

The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. 

Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure 

demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely 

DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation 

of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant 

frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure 

model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the 

vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with 

hard constraints being imposed on the low frequency actuator displacements. 

Keywords: Direct velocity feedback (DVF), disturbance observer (DOB), vibration control, human-induced 

vibrations 

 

1. INTRODUCTION 
Integrated control systems can enhance controller designs through meeting fundamental objectives such as 

reference tracking, disturbance rejection, stabilization and robustness. These series of goals can be achieved with 

a combined approach as opposed to the use of just a single feedback controller system1. Additional considerations 

in the form of vibration mitigation performances, potential installation and running costs, robustness and 

efficiency of such systems have to be taken into account in any potential project proposal. 

In relation to civil structures subjected to human-induced vibrations, for example floors and footbridges, feedback 

control strategies have been trialled in field studies to augment damping of structural resonant frequencies prone 

to such excitations. This has been instrumental towards improving their vibration serviceability performances. 

This approach has been adopted because human walking forces cannot easily be measured. The controller scheme 

used in most of such past studies is direct velocity feedback (DVF) due to its robustness2,3,4. 

Feedback control systems can suffer from some inherent disadvantages, for example their inability to provide 

some form of predictive control to compensate for the effects of measurable or unmeasurable disturbances which 

may in turn present unsatisfactory vibration mitigation performances. An example is the inability of 

predominantly feedback systems to deal with off-resonance problems, for example, which may lie in the quasi-

static zone5. To deal with some of these problems, approaches incorporating disturbance observers have been 

explored to compensate for these limitations. Previous research has demonstrated disturbance estimators 

combined with feedback controller schemes such as the Independent Modal Space Control (IMSC) to suppress 

vibrations in both linear and nonlinear flexible structures such as a beam and flexible boom5,6. This has had an 

impact in improving the vibration mitigation performance beyond only a feedback system with an IMSC 

controller. It has been acknowledged that one of the key challenges in implementing disturbance-compensated 

feedforward control is dependent on the accuracy of the structural model used.  
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In instances where a purely feedback control system does not present satisfactory vibration mitigation 

performance, some additional improvements in the control can be realised by the addition of some form of 

feedforward control. There has been a vast amount of research dedicated to the parameterization of disturbance 

observers as well as an overview of their equivalence in linear systems7,8,9, their design for compensation of low 

frequency disturbances10, as well as implementations in the control of a high-speed direct drive positioning table 

and in position control of lightweight single-link flexible arms with large payload variations11,12. 

The motivation for the work presented here is to investigate a potential approach for dealing with both on-

resonance and off-resonance excitations of civil engineering structures from human activities. Human activities 

contain energy not only at the activity frequency but also at harmonics of this frequency. Where the harmonics 

coincide with resonant frequencies of a structure, this has potential for exciting resonance. On the other hand, 

where this does not coincide with exciting resonance, the amount of energy may still be sufficiently significant to 

cause annoyance or disturbance. Previous controllers, for example, the direct velocity feedback (DVF) controller 

have impressive vibration attenuation properties at resonance, but are inefficient at dealing with the effects of 

disturbances that may be even slightly off-resonance. Addition of a controller loop that enhances the vibration 

mitigation performance of such a controller off-resonance would be beneficial. In this paper, sections 2 and 3 

introduce the actuator and walkway bridge dynamics, and section 4 introduces the design of controller schemes: 

direct velocity feedback (DVF) without and with a disturbance observer (DOB). Section 5 presents the results of 

analytical studies in terms of the actuator displacement to disturbance input estimates, estimates of frequency 

response functions (FRF) and uncontrolled and controlled responses to synthesized walking forces. 

 

2. ACTUATOR 
The actuator whose dynamics are used in the analytical studies presented in this work is an APS Dynamics 

electrodynamic shaker, model 400. The analytical models representing the force-voltage (N/V) and displacement-

voltage (m/V) characteristics when the actuator is driven in the current drive mode can be represented by 

Equations 1 and 2. The actuator parameters are estimated as: 𝐾𝑎𝑐𝑡 = 300 N/V, 𝜁𝑎𝑐𝑡 = 0.10, 𝜔𝑎𝑐𝑡  = 8.17 rad/s, and 

𝐾𝑎𝑐𝑡_𝑑 = 10. The actuator stroke is 75 mm. A notch filter in Equation 3, with  𝑘𝑛𝑜𝑡 = 8 is introduced to compensate 

for the low damping characteristic when the actuator is driven in the current drive mode which has the potential 

to introduce a stroke saturation instability. Figures 1a and 1b show the frequency response function (FRF) 

magnitude and phase of the force-voltage characteristics for both the uncompensated and compensated actuator 

dynamics. 
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Where 𝐺𝑎𝑐𝑡(𝑠) Actuator dynamics (Force – Voltage) 

 𝐺𝑎𝑐𝑡_𝑑(𝑠) Actuator dynamics (Displacement – Voltage) 

 𝐹(𝑠) Actuator force 

 𝑉(𝑠) Voltage input 

 𝐾𝑎𝑐𝑡  Actuator force – voltage characteristic 

 𝐾𝑎𝑐𝑡_𝑑 Derived actuator displacement – voltage characteristic 

 𝜁𝑎𝑐𝑡 Damping ratio of actuator 

 𝜔𝑎𝑐𝑡  Resonant frequency of actuator 

 𝑘𝑛𝑜𝑡 Notch filter constant 

 



 
a)  b)  

Figure 1. Actuator dynamics (force-voltage characteristics) with and without notch filter compensation 

 

3. WALKWAY BRIDGE DYNAMICS 
The walkway bridge located in the University of Exeter’s Forum building is the structure whose dynamic 

properties are used in the analytical work presented here. This is shown in Figure 2a and Figure 2b shows a plan 

view of the test points that were used for experimental modal analysis (EMA) tests. Further details of these tests 

are given in13. A summary of the estimated modal properties of the lowest four vibration modes observable at Test 

Point (TP) 7 are presented in Table 1. TP7 is the sensor/actuator location for the control studies in this work. 

 

 
a)  

 
b)  

Figure 2. (a) Photo of walkway bridge in the Forum building, University of Exeter and (b) a plan view of the 

test grid used for EMA 

 

Table 1. Summary of estimated modal properties from EMA 

Mode Natural Frequency [Hz] Damping ratio [%] 

1 6.33 1.0 

2 10.5 0.9 

3 14.6 2.0 

4 34.3 2.6 

 

From the estimated modal properties, a lumped parameter model of the walkway bridge with ‘n’ modal 

coordinates can be derived as shown in Equation 4. 𝑀∗, 𝐶∗ and 𝐾∗ are the n x n modal mass, modal damping and 

modal stiffness matrices. 𝐷 is the m x m actuator location matrix and 𝐸 is the m x m excitation force location 

matrix. ∅ represents the m x n mass normalised modal transformation matrix and 𝜁𝑖  and 𝜔𝑖 are the modal damping 

ratio and circular natural frequency of the 𝑖th vibration mode. State space representations in Equations 5 and 6 

can be obtained from Equation 4, and they express the output in the form of modal displacements and velocities. 

The transformation ∅𝑇𝑥1 and ∅𝑇𝑥2 can be used to revert back to the nodal displacements and velocities in the 

physical space at all sensor locations in the EMA tests. Thus, reduced order models (ROMs) at different points of 

interest in the walkway bridge structure, necessary for controller designs as well as for analytical studies can be 

developed as shown in Equation 7. These can be converted to transfer function form through the transformation 

𝐺(𝑠) =  𝐶𝑝𝑜(𝑠𝐼 − 𝐴𝑝𝑜)
−1

𝐵𝑝𝑜 + 𝐷𝑝𝑜. TP7 in Figure 2b is the location selected for the control studies in this work. 



     𝑀∗𝑥 ̈ + 𝐶∗𝑥̇ +  𝐾∗𝑥 =  ∅𝑇𝐷𝑢 + ∅𝑇𝐸𝑓 (4) 
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4. DIRECT VELOCITY FEEDBACK WITHOUT AND WITH DISTURBANCE 

OBSERVER 
The controller scheme for the DVF controller designed and implemented in the analytical studies is shown in 

Figure 3. 𝐺𝑝(𝑠), 𝐺𝑎𝑐𝑡(𝑠), 𝐺𝑏𝑝(𝑠), 𝐺𝑛𝑜𝑡(𝑠) and 𝐶(𝑠), in which 𝑠 = 𝑗𝜔, represent the walkway bridge, actuator, 

band pass filter, notch filter and controller dynamics. 𝑑𝑖(𝑡), 𝑦̈𝑝(𝑡), 𝑓𝑐(𝑡), 𝑟(𝑡), 𝑒(𝑡), and 𝑣(𝑡) are the disturbance 

inputs, structural acceleration responses, actuator force, reference signal, error signal and control signal. 

 

Figure 3. DVF controller 

For the mitigation of human-induced vibrations, the augmentation of structural damping through feedback as 

shown in Equation 9 has often been the primary objective of the control design in previous studies as human 

walking forces cannot directly be measured. The DVF controller, 𝐶(𝑠), takes the form of Equation 8, and 𝐾𝑔 is 

the gain parameter to be designed. The design of 𝐾𝑔 is often a compromise between performance and stability 

requirements. Typical requirements set out to be met by the DVF controller to ensure its robustness are:  

1. To meet minimum stability margins, i.e. Gain Margin (GM) of 5dB and Phase Margin (PM) of 30 

degrees. 

2. The peak of the actuator displacement to disturbance input relationship in Equation 10 around the 

actuator resonant frequency, i.e. 𝑠 = 𝑗𝜔𝑎𝑐𝑡  should not exceed the threshold of 0.05 mm/N. This is a 

dynamic quantity that minimises potential for stroke saturation from the harmonics of walking around 

the actuator resonant frequency. 

 

𝐶(𝑠) =
𝐾𝑔

𝑠
 

(8) 



𝑦𝑝(𝑠) =
𝐺𝑝(𝑠)

1 + 𝐺𝑝(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)
𝑑𝑖(𝑠) 

(9) 

𝑦𝑎𝑐𝑡_𝑑(𝑠) = −
𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡_𝑑(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡_𝑑(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)𝐺𝑝(𝑠)
𝑑𝑖(𝑠) 

(10) 

 

For the DVF controller, a gain of 𝐾𝑔 = 1150 Vs/m satisfies the stability margins (GM and PM) outlined by 

requirement (1) above, whilst a gain of 𝐾𝑔 = 800 Vs/m satisfies the requirement (2) above. Thus, the minimum 

of the two gains i.e. 𝐾𝑔 = 800 Vs/m is the driver for the maximum gain that can be implemented with the purely 

DVF controller. 𝐺𝑏𝑝(𝑠) is a second order Butterworth bandpass filter with cut-off frequencies 0.5 – 50.0 Hz. 

An outer loop DVF controller with a disturbance observer in a frequency domain formulation is shown in Figure 

48. The disturbance observer is a compensatory controller that makes use of the output of the disturbance observer 

to impose disturbance cancellation as an additional feature to the outer loop DVF controller. This is investigated 

in this work to deal with off-resonant disturbances, which are quite common from the harmonics of human loading 

patterns on civil engineering structures. The outer loop DVF controller still augments the open-loop structural 

damping. The additional parameters in Figure 4, i.e. 𝑄(𝑠), 𝐺𝑛
−1(𝑠) and 𝐺 represent a second order Butterworth 

band pass filter, inverse plant dynamics and a gain term to convert the estimated disturbance force into a command 

voltage signal. 

 

Figure 4. Outer loop DVF controller with disturbance observer (DOB) 

𝐶(𝑠) is the same form as in Equation 8, and the relationships in Equations 11 to 14 can also be developed for the 

DVF controller with a disturbance observer. 𝐺𝑛
−1 is the inverse plant dynamics based on the fundamental vibration 

mode of the walkway bridge considered in 𝐺𝑝(𝑠) from Table 1. 𝑄(𝑠) is a second order band pass Butterworth 

filter with cut-off frequency of 3.5 − 20.0 Hz and the gain term 𝐺 = 0.00125 in this work. These are the key 

design parameters for the disturbance observer loop. 

𝑦𝑝(𝑠) =
𝐺𝑝(𝑠)

1 + 𝐺𝑝(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡(𝑠)𝐺𝑐(𝑠) (𝐶(𝑠) − 𝐺𝑄(𝑠))
𝑑𝑖(𝑠) 

(11) 

𝑦𝑎𝑐𝑡_𝑑(𝑠) = −
𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡_𝑑(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)𝐶(𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡_𝑑(𝑠)𝐺𝑐(𝑠)𝐺𝑏𝑝(𝑠)𝐶(𝑠)𝐺𝑝(𝑠)
𝑑𝑖(𝑠) 

(12) 

  

𝐺𝑄(𝑠) = 𝑄(𝑠)𝐺𝑛
−1(𝑠)𝐺  (13) 

𝐺𝑐(𝑠) =  
1

1 + 𝑄(𝑠)𝐺𝑛𝑜𝑡(𝑠)𝐺𝑎𝑐𝑡𝑚(𝑠)𝐺
 

(14) 

  

 



5. RESULTS OF ANALYTICAL STUDIES 
The analytical studies presented comprise of: 

1. A review of the actuator displacement to disturbance input relationships in Equations 10 and 12 for the 

DVF and DVF+DOB controllers. 

2. Estimates of uncontrolled and controlled frequency response functions (FRFs) for DVF and DVF+DOB 

controllers. 

3. Uncontrolled and controlled responses to synthesized walking excitation forces at three different pacing 

frequencies for DVF and DVF+DOB controllers as well as monitoring of the actuator displacements. 

5.1. Actuator displacements under DVF and DVF+DOB 

The predictions of the actuator displacement to disturbance input relationships for the DVF and DVF+DOB 

controllers in Equations 10 and 12 for the velocity gain designed: 𝐾𝑔 = 800 Vs/m are shown in Figure 5. They 

represent implementations with the notch filter compensation in Equation 3. Both DVF and DVF+DOB meet the 

required design constraint of not exceeding the design limit imposed of 0.05 mm/N. This is shown for the 

frequency bandwidth 0-5 Hz which is more critical in the evaluation of the potential for actuator stroke saturation. 

At higher frequencies, actuator stroke does not present a problem and hence this is not shown here.  

 
Figure 5. Actuator displacement to disturbance input relationships 

 

5.2. Uncontrolled and controlled frequency response functions (FRFs) 

The estimates of the uncontrolled and controlled FRFs are given in Figures 6a and 6b, in which the latter is a 

zoomed plot of the former that is introduced for clarity. OL and CL refer to open-loop and closed-loop systems, 

respectively. CL DVF1 and CL DVF+DOB1 represent Equations 9 and 11 without notch filter compensation for 

the actuator dynamics whilst CL DVF and CL DVF+DOB represent the same equations with notch filter 

compensation for the actuator dynamics. Estimates of controlled FRFs for CL DVF1 and CL DVF+DOB1 

highlight the influence of the notch filter used to provide compensation for the actuator dynamics in the slight 

degradation of performance for DVF and DVF+DOB by virtue of the phase it introduces. The estimates of the 

controlled FRFs in Figure 6b show that that the DVF+DOB controller has better vibration mitigation performances 

at and around the dominant resonant frequency of the walkway bridge structure as well as at and around the higher 

frequencies of the walkway bridge structure in comparison to the DVF controller. 



 
a)  

 
b)  

Figure 6. DVF and DVF+DOB controllers with and without inner loop actuator compensation: a) over the 

entire frequency bandwidth considered, b) a zoomed plot around controlled resonances 

 

5.3. Responses to walking excitation 

Three synthesized walking excitation forces, described here as walking frequencies 1, 2 and 3, were generated 

and introduced as disturbance inputs, 𝑑𝑖(𝑡) in the systems described by Figures 3 and 4. They represent realistic 

input forces that are derived from an actual acceleration response time history measured at TP7 for a pedestrian 

walking across the walkway bridge structure at a pacing frequency of 2.1 Hz, which is the third sub-harmonic of 

its fundamental resonant frequency. This is fed through the inverse plant dynamics and appropriate filtering 

applied to generate the synthesized walking force in Figure 7a for walking frequency 1. The sampling time steps 

were adjusted to generate walking frequencies 2 and 3 in Figures 7b and 7c. These correspond with walking 

frequencies of 1.9 Hz and 1.7 Hz. The associated Fourier spectra of the three walking frequencies 1, 2 and 3 in 

Figure 7 are shown in Figure 8. 



 
a) Walking at 2.1 Hz 

 
b) Walking at 1.9 Hz 

 
c) Walking at 1.7 Hz 

Figure 7. Synthesized walking force time histories at three different walking frequencies of 2.1 Hz, 1.90 Hz 

and 1.7 Hz 

 



 
Figure 8. Fourier spectra of synthesized walking force time histories in Figure 7 

 

Figures 9, 10 and 11 show the estimates of the uncontrolled and controlled structural acceleration responses as 

well as the actuator forces. Table 2 gives an indication of the improvement in performance for both the DVF and 

DVF+DOB controllers, these being implemented with compensation for the actuator dynamics. These are the 

peaks of the 1s running root mean square (RMS) acceleration responses, which are defined as the maximum 

transient vibration values (MTVV) following the recommendation of the International Organization of 

Standardization: ISO 263114. 

 

 
a) Uncontrolled and controlled responses 

 
b) Actuator forces 

Figure 9. Uncontrolled and controlled walkway bridge structural responses and actuator forces under 

synthesized walking excitation 1 



 

 

 
a) Uncontrolled and controlled responses 

 
b) Actuator forces 

Figure 10. Uncontrolled and controlled walkway bridge structural responses and actuator forces under 

synthesized walking excitation 2 

 

 

 



 
a) Uncontrolled and controlled responses 

 
b) Actuator forces 

Figure 11. Uncontrolled and controlled walkway bridge structural responses and actuator forces under 

synthesized walking excitation 3 

 

Table 2 highlights potential vibration mitigation performances of DVF and DVF+DOB controllers implemented 

of an analytical model of a walkway bridge structure subjected to three synthesized walking excitation forces. It 

is seen that the DVF+DOB controller offers a general improvement in the vibration mitigation performance for 

all the three synthesized walking excitation forces considered and this ranges from about 3.5% to 10.0%. Table 3 

also reflects that appropriate compensation has been provided to deal with potential actuator stroke saturation 

instability. 

Table 2. Peaks of the 1s running RMS acceleration responses simulated for uncontrolled and controlled 

structural models to walking excitation frequencies 1, 2 and 3 

 Uncontrolled 

response (m/s2) 

Controlled response (m/s2) 

DVF 

(reduction in parentheses) 

Controlled response (m/s2) 

DVF + DOB 

(reduction in parentheses) 

Walking frequency 1 0.1345 0.0140 (89.6 %) 0.0090 (93.3 %) 

Walking frequency 2 0.0327 0.0129 (60.6 %) 0.0095 (71.0 %)  

Walking frequency 3 0.0383 0.0114 (70.2 %) 0.0089 (76.8 %) 

 

Table 3. Simulated actuator displacements under walking excitation forces 1, 2 and 3 

 Actuator displacement 

(mm) – DVF 

Actuator displacement 

(mm) – DVF + DOB 

Walking frequency 1 15.11 19.20 

Walking frequency 2 18.92 21.14 

Walking frequency 3 21.11 24.70 



6. CONCLUSIONS 
The analytical studies presented in this work have looked at comparative studies between a purely direct velocity 

feedback (DVF) controller and a direct velocity feedback controller with an inner loop disturbance observer 

(DVF+DOB) for the control of vibrations on a walkway bridge structure. From the controlled frequency response 

function (FRF) estimates, there appears to be a great potential of adding a DOB to an outer loop DVF controller 

to deal with off-resonance excitation forces within a certain frequency bandwidth that may be introduced from 

the harmonics of walking excitation. Such improvements are greatly influenced by compensation provided for the 

actuator dynamics to deal with potential stroke saturation at the actuator resonant frequency. There also appears 

to be greater potential offered by a DVF+DOB in suppressing higher structural resonant frequencies beyond what 

is achievable with a purely DVF controller.  

Studies of analytical simulations with three synthesized walking excitation forces at different pacing frequencies 

highlight the observations seen in the FRF estimates. They show the potential improvements in the vibration 

mitigation performance of a DVF+DOB controller over a purely DVF controller, with improvements in the range 

of 3.5 – 10.0 % as reflected in Table 3. As seen in the present studies, a DOB can thus be incorporated with an 

outer loop DVF controller to augment its vibration mitigation performance over a broader range of frequencies. 

Hard constraints are introduced to deal with potential stroke saturation instability of the APS actuators.  
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