259 research outputs found

    The surface density profile of NGC 6388: a good candidate for harboring an intermediate-mass black hole

    Full text link
    We have used a combination of high resolution (HST ACS-HRC, ACS-WFC, and WFPC2) and wide-field (ESO-WFI) observations of the galactic globular cluster NGC 6388 to derive its center of gravity, projected density profile, and central surface brightness profile. While the overall projected profiles are well fit by a King model with intermediate concentration (c=1.8) and sizable core radius (rc=7"), a significant power law (with slope \alpha=-0.2) deviation from a flat core behavior has been detected within the inner 1 arcsecond. These properties suggest the presence of a central intermediate mass black hole. The observed profiles are well reproduced by a multi-mass isotropic, spherical model including a black hole with a mass of ~5.7x10^3 Msol.Comment: ApJ Letter in pres

    The formation of Kuiper-belt Binaries through Exchange Reactions

    Full text link
    Recent observations have revealed an unexpectedly high binary fraction among the Trans-Neptunian Objects (TNOs) that populate the Kuiper-belt. The discovered binaries have four characteristics they comprise a few percent of the TNOs, the mass ratio of their components is close to unity, their internal orbits are highly eccentric, and the orbits are more than 100 times wider than the primary's radius. In contrast, theories of binary asteroid formation tend to produce close, circular binaries. Therefore, a new approach is required to explain the unique characteristics of the TNO binaries. Two models have been proposed. Both, however, require extreme assumptions on the size distribution of TNOs. Here we show a mechanism which is guaranteed to produces binaries of the required type during the early TNO growth phase, based on only one plausible assumption, namely that initially TNOs were formed through gravitational instabilities of the protoplanetary dust layer.Comment: 12pages, 4 figure

    An Unexpectedly Swift Rise in the Gamma-ray Burst Rate

    Full text link
    The association of long gamma-ray bursts with supernovae naturally suggests that the cosmic GRB rate should trace the star formation history. Finding otherwise would provide important clues concerning these rare, curious phenomena. Using a new estimate of Swift GRB energetics to construct a sample of 36 luminous GRBs with redshifts in the range z=0-4, we find evidence of enhanced evolution in the GRB rate, with ~4 times as many GRBs observed at z~4 than expected from star formation measurements. This direct and empirical demonstration of needed additional evolution is a new result. It is consistent with theoretical expectations from metallicity effects, but other causes remain possible, and we consider them systematically.Comment: 4 pages, 4 figures; minor changes to agree with published versio

    Metastable Frenkel pair defect in graphite: source of Wigner energy?

    Get PDF
    The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9 eV more stable than its isolated constituents, still has a formation energy of 10.8 eV. The barrier to recombination to perfect graphite is calculated to be 1.3 eV, consistent with the experimental first Wigner energy release peak at 1.38 eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation

    Two-point correlation properties of stochastic "cloud processes''

    Full text link
    We study how the two-point density correlation properties of a point particle distribution are modified when each particle is divided, by a stochastic process, into an equal number of identical "daughter" particles. We consider generically that there may be non-trivial correlations in the displacement fields describing the positions of the different daughters of the same "mother" particle, and then treat separately the cases in which there are, or are not, correlations also between the displacements of daughters belonging to different mothers. For both cases exact formulae are derived relating the structure factor (power spectrum) of the daughter distribution to that of the mother. These results can be considered as a generalization of the analogous equations obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement fields applied to particle distributions. An application of the present results is that they give explicit algorithms for generating, starting from regular lattice arrays, stochastic particle distributions with an arbitrarily high degree of large-scale uniformity.Comment: 14 pages, 3 figure

    Interpreting the M22 Spike Events

    Get PDF
    Recently Sahu et al., using the Hubble Space Telescope to monitor stars in the direction of the old globular cluster M22, detected six events in which otherwise constant stars brightened by ~50% during a time of <1 day. They tentatively interpret these unresolved events as due to microlensing of background bulge stars by free-floating planets in M22. I show that if these spike events are due to microlensing, the lensing objects are unlikely to be associated with M22, and unlikely to be part of a smoothly distributed Galactic population. Thus either there happens to be a massive, dark cluster of planets along our line-of-sight to M22, or the spike events are not due to microlensing. The lensing planets cannot be bound to stars in the core of M22: if they were closer than 8 AU, the lensing influence of the parent star would have been detectable. Moreover, in the core of M22, all planets with separations > 1 AU would have been ionized by random stellar encounters. Most unbound planets would have escaped the core via evaporation which preferentially affects such low-mass objects. Bound or free-floating planets can exist in the outer halo of M22; however, for reasonable assumptions, the maximum optical depth to such a population falls short of the observed optical depth, tau ~ 3x10^{-6}, by a factor of 5-10. Therefore, if real, these events represent the detection of a significant free-floating Galactic planet population. The optical depth to these planets is comparable to and mutually exclusive from the optical depth to resolved events measured by microlensing survey collaborations toward the bulge, and thus implies a similar additional mass of lensing objects. Such a population is difficult to reconcile with both theory and observations.Comment: Minor changes. 12 pages, 4 figures, 2 tables. Accepted to ApJ. To appear in Feb 10, 2002 issue (v566

    Atomic structure of dislocation kinks in silicon

    Full text link
    We investigate the physics of the core reconstruction and associated structural excitations (reconstruction defects and kinks) of dislocations in silicon, using a linear-scaling density-matrix technique. The two predominant dislocations (the 90-degree and 30-degree partials) are examined, focusing for the 90-degree case on the single-period core reconstruction. In both cases, we observe strongly reconstructed bonds at the dislocation cores, as suggested in previous studies. As a consequence, relatively low formation energies and high migration barriers are generally associated with reconstructed (dangling-bond-free) kinks. Complexes formed of a kink plus a reconstruction defect are found to be strongly bound in the 30-degree partial, while the opposite is true in the case of 90-degree partial, where such complexes are found to be only marginally stable at zero temperature with very low dissociation barriers. For the 30-degree partial, our calculated formation energies and migration barriers of kinks are seen to compare favorably with experiment. Our results for the kink energies on the 90-degree partial are consistent with a recently proposed alternative double-period structure for the core of this dislocation.Comment: 12 pages, two-column style with 8 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#rn_di

    Star Clusters as Type Ia Supernova Factories

    Get PDF
    We find a remarkably enhanced production rate in star clusters (relative to the field) of very short period, massive double-white-dwarf stars and of giant-white dwarf binaries. These results are based on N-body simulations performed with the new GRAPE-6 special purpose hardware and are important in identifying and characterizing the progenitors of type Ia supernovae. The high incidence of very close double-white-dwarf systems is the result of dynamical encounters between (mostly) primordial binaries and other cluster stars. Orbital hardening rapidly drives these degenerate binaries to periods under ~10 hours. Gravitational radiation emission and mergers producing supra-Chandrasekhar objects follow in less than a Hubble time. If most stars are born in clusters then estimates of the double white dwarf merger rates in galaxies (due to cluster dynamical interaction) must be increased more than tenfold. A majority of the Roche lobe overflow giant-white dwarf binaries are not primordial; they are produced in exchange reactions. Most cases resulted in a common-envelope and formation of a double-white-dwarf binary rather than Supersoft X-ray sources leading possibly to a type Ia supernova.Comment: 29 pages, 6 figures (2 color), 3 tables, accepted for publication in the Astrophysical Journa

    The construction of non-spherical models of quasi-relaxed stellar systems

    Full text link
    Spherical models of collisionless but quasi-relaxed stellar systems have long been studied as a natural framework for the description of globular clusters. Here we consider the construction of self-consistent models under the same physical conditions, but including explicitly the ingredients that lead to departures from spherical symmetry. In particular, we focus on the effects of the tidal field associated with the hosting galaxy. We then take a stellar system on a circular orbit inside a galaxy represented as a "frozen" external field. The equilibrium distribution function is obtained from the one describing the spherical case by replacing the energy integral with the relevant Jacobi integral in the presence of the external tidal field. Then the construction of the model requires the investigation of a singular perturbation problem for an elliptic partial differential equation with a free boundary, for which we provide a method of solution to any desired order, with explicit solutions to two orders. We outline the relevant parameter space, thus opening the way to a systematic study of the properties of a two-parameter family of physically justified non-spherical models of quasi-relaxed stellar systems. The general method developed here can also be used to construct models for which the non-spherical shape is due to internal rotation. Eventually, the models will be a useful tool to investigate whether the shapes of globular clusters are primarily determined by internal rotation, by external tides, or by pressure anisotropy.Comment: AASTeX v5.2, 37 pages with 2 figures, accepted for publication in The Astrophysical Journa

    Hydrogen Interaction with Dislocations in Si

    Get PDF
    An H plasma has a remarkable effect on dislocation mobility in silicon, reducing its activation energy to 1.2 eV. Applying density functional theory to the interactions of H and H? With the core of the 90 degrees partial dislocation in Si, we have identified a path for motion involving kink formation and migration at hydrogenated core bonds which conforms exactly to the experimentally measured activation energ
    • …
    corecore