12 research outputs found

    The Swift Ultra-Violet/Optical Telescope

    Full text link
    The UV/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (approximately 1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm band as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey-Chretien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.Comment: 55 Pages, 28 Figures, To be published in Space Science Review

    Evaporative losses from a common reed-dominated peachleaf willow and cottonwood riparian plant community

    Get PDF
    Our study is one of the first to integrate and apply within-canopy radiation physics parameters and scaling-up leaf-level stomatal resistace (rL) to canopy resistance (rc) approach to quantify hourly transpiration (TRP) rates of individual riparian plant species—common reed (Phragmites australis), peachleaf willow (Salix amygdaloides), and cottonwood (Populus deltoides)— in a mixed riparian plant community in the Platte River Basin in central Nebraska. Two experimental years (2009 and 2010) were contrasted by warmer air temperature and presence of flood water in 2010. The seasonal average rc values for common reed, peachleaf willow, and cottonwood in 2009 were 76, 70, and 107 s m-1, respectively. The corresponding rc values in the flood year (2010) were 70, 66, and 105 s m-1 for the same species, respectively. In 2009, the seasonal total TRP for common reed, peachleaf willow, and cottonwood were 483, 522, and 431 mm, respectively. Corresponding TRP values in 2010 were greater as 550, 655, and 496 mm, respectively. In 2009, TRP accounted for 64% of ETa during June–September, and the proportion varied between 41% and 69% for most of the season. In 2010, TRP accounted for 61% of ETa during June–September, and the proportion varied between 41% and 65% for most of the season. The average surface evaporation rate of the riparian zone was 0.81 mm d-1 in 2009 and 1.70 mm d-1 in 2010. Seasonal evaporation was 160 mm in 2009 and 312 mm in 2010. The study provides a basis for understanding the dynamics of transpiration for riparian vegetation in response to the environmental conditions and provides valuable water use data for more complete water balance analyses by accounting for the water use of riparian vegetation species

    The Physics of the Sun

    No full text

    Solar radiation fundamentals and PV system components

    No full text
    Solar PV technology has emerged as one of the most matured and fast evolving renewable energy technologies and it is expected that it will play a major role in the future global electricity generation mix. Keeping the rapid development of the PV technology into consideration, this chapter systematically documents the evolution of solar PV material as well as the PV applications and PV markets. It also provides insight into the trend in batteries and inverters used for solar PV applications. Furthermore, a comparative analysis of different PV technologies and its development is summarized. The rest of the chapter aims at providing a comprehensive analysis of solar radiation measurement and modelling techniques to assess the availability of solar radiation at different locations. The chapter presents comprehensive information for solar energy engineers, architects and other practitioners

    The Observation of a shadow of the moon in the underground muon flux in the Soudan-2 detector

    No full text
    A shadow of the moon, with a statistical significance of 5 sigma, has been observed in the underground muon flux at a depth of 2090 mwe using the Soudan 2 detector. The angular resolution of the detector is well described by a Gaussian with a sigma of less than 0.3 degrees. The position of the shadow confirms that the alignment of the detector is known to better than 0.15 degrees and has remained stable during ten years of data taking.Comment: 18 pages including 6 figures. Submitted to Physical Review
    corecore