35 research outputs found

    Enhancer of Zeste Homolog 2 Induces Pulmonary Artery Smooth Muscle Cell Proliferation

    Get PDF
    Pulmonary Arterial Hypertension (PAH) is a progressively devastating disease characterized by excessive proliferation of the Pulmonary Arterial Smooth Muscle Cells (PASMCs). Studies suggest that PAH and cancers share an apoptosis-resistant state featuring excessive cell proliferation. The proliferation of cancer cells is mediated by increased expression of Enhancer of Zeste Homolog 2 (EZH2), a mammalian histone methyltransferase that contributes to the epigenetic silencing of target genes. However, the role of EZH2 in PAH has not been studied. In this study, it is hypothesized that EZH2 could play a role in the proliferation of PASMCs.In the present study, the expression patterns of EZH2 were investigated in normal and hypertensive mouse PASMCs. The effects of EZH2 overexpression on the proliferation of human PASMCs were tested. PASMCs were transfected with EZH2 or GFP using nucleofector system. After transfection, the cells were incubated for 48 hours at 37°C. Proliferation and cell cycle analysis were performed using flow cytometry. Apoptosis of PASMCs was determined using annexin V staining and cell migration was tested by wound healing assay.EZH2 protein expression in mouse PASMCs were correlated with an increase in right ventricular systolic pressure and Right Ventricular Hypertrophy (RVH). The overexpression of EZH2 in human PASMCs enhances proliferation, migration, and decrease in the rate of apoptosis when compared to GFP-transfected cells. In the G2/M phase of the EZH2 transfected cells, there was a 3.5 fold increase in proliferation, while there was a significant decrease in the rate of apoptosis of PASMCs, when compared to control.These findings suggest that EZH2 plays a role in the migration and proliferation of PASMCs, which is a major hallmark in PAH. It also suggests that EZH2 could play a role in the development of PAH and can serve as a potential target for new therapies for PAH

    The Hepcidin/Ferroportin axis modulates proliferation of pulmonary artery smooth muscle cells

    No full text
    Studies were undertaken to examine any role for the hepcidin/ferroportin axis in proliferative responses of human pulmonary artery smooth muscle cells (hPASMCs). Entirely novel findings have demonstrated the presence of ferroportin in hPASMCs. Hepcidin treatment caused increased proliferation of these cells most likely by binding ferroportin resulting in internalisation and cellular iron retention. Cellular iron content increased with hepcidin treatment. Stabilisation of ferroportin expression and activity via intervention with the therapeutic monoclonal antibody LY2928057 reversed proliferation and cellular iron accumulation. Additionally, IL-6 treatment was found to enhance proliferation and iron accumulation in hPASMCs; intervention with LY2928057 prevented this response. IL-6 was also found to increase hepcidin transcription and release from hPASMCs suggesting a potential autocrine response. Hepcidin or IL-6 mediated iron accumulation contributes to proliferation in hPASMCs; ferroportin mediated cellular iron excretion limits proliferation. Haemoglobin also caused proliferation of hPASMCs; in other novel findings, CD163, the haemoglobin/haptoglobin receptor, was found on these cells and offers a means for cellular uptake of iron via haemoglobin. Il-6 was also found to modulate CD163 on these cells. These data contribute to a better understanding of how disrupted iron homeostasis may induce vascular remodelling, such as in pulmonary arterial hypertension
    corecore