6 research outputs found

    Thienopyrimidinone based sirtuin-2 (SIRT2)-selective inhibitors bind in the ligand induced 'selectivity pocket'.

    No full text
    Sirtuins (SIRTs) are NAD-dependent deacylases, known to be involved in a variety of pathophysiological processes and thus remain promising therapeutic targets for further validation. Previously, we reported a novel thienopyrimidinone SIRT2 inhibitor with good potency and excellent selectivity for SIRT2. Herein, we report an extensive SAR study of this chemical series and identify the key pharmacophoric elements and physiochemical properties that underpin the excellent activity observed. New analogues have been identified with submicromolar SIRT2 inhibtory activity and good to excellent SIRT2 subtype-selectivity. Importantly, we report a co-crystal structure of one of our compounds (29c) bound to SIRT2. This reveals our series to induce the formation of a previously reported 'selectivity pocket', but to bind in an inverted fashion to what might be intuitively expected. We believe these findings will contribute significantly to understanding of the mechanism of action of SIRT2 inhibitors and to the identification of refined, second generation inhibitors

    The mechanism of sirtuin 2–mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease

    Get PDF
    Sirtuin genes have been associated with aging and are known to affect multiple cellular pathways. Sirtuin 2 was previously shown to modulate proteotoxicity associated with age-associated neurodegenerative disorders such as Alzheimer and Parkinson disease (PD). However, the precise molecular mechanisms involved remain unclear. Here, we provide mechanistic insight into the interplay between sirtuin 2 and α-synuclein, the major component of the pathognomonic protein inclusions in PD and other synucleinopathies. We found that α-synuclein is acetylated on lysines 6 and 10 and that these residues are deacetylated by sirtuin 2. Genetic manipulation of sirtuin 2 levels in vitro and in vivo modulates the levels of α-synuclein acetylation, its aggregation, and autophagy. Strikingly, mutants blocking acetylation exacerbate α-synuclein toxicity in vivo, in the substantia nigra of rats. Our study identifies α-synuclein acetylation as a key regulatory mechanism governing α-synuclein aggregation and toxicity, demonstrating the potential therapeutic value of sirtuin 2 inhibition in synucleinopathies.Open-Access-Publikationsfonds 2017peerReviewe

    X-ray spectrometry

    No full text
    corecore