383 research outputs found

    On the cohomology of pseudoeffective line bundles

    Full text link
    The goal of this survey is to present various results concerning the cohomology of pseudoeffective line bundles on compact K{\"a}hler manifolds, and related properties of their multiplier ideal sheaves. In case the curvature is strictly positive, the prototype is the well known Nadel vanishing theorem, which is itself a generalized analytic version of the fundamental Kawamata-Viehweg vanishing theorem of algebraic geometry. We are interested here in the case where the curvature is merely semipositive in the sense of currents, and the base manifold is not necessarily projective. In this situation, one can still obtain interesting information on cohomology, e.g. a Hard Lefschetz theorem with pseudoeffective coefficients, in the form of a surjectivity statement for the Lefschetz map. More recently, Junyan Cao, in his PhD thesis defended in Grenoble, obtained a general K{\"a}hler vanishing theorem that depends on the concept of numerical dimension of a given pseudoeffective line bundle. The proof of these results depends in a crucial way on a general approximation result for closed (1,1)-currents, based on the use of Bergman kernels, and the related intersection theory of currents. Another important ingredient is the recent proof by Guan and Zhou of the strong openness conjecture. As an application, we discuss a structure theorem for compact K{\"a}hler threefolds without nontrivial subvarieties, following a joint work with F.Campana and M.Verbitsky. We hope that these notes will serve as a useful guide to the more detailed and more technical papers in the literature; in some cases, we provide here substantially simplified proofs and unifying viewpoints.Comment: 39 pages. This survey is a written account of a lecture given at the Abel Symposium, Trondheim, July 201

    Extension of holomorphic functions and cohomology classes from non reduced analytic subvarieties

    Full text link
    The goal of this survey is to describe some recent results concerning the L 2 extension of holomorphic sections or cohomology classes with values in vector bundles satisfying weak semi-positivity properties. The results presented here are generalized versions of the Ohsawa-Takegoshi extension theorem, and borrow many techniques from the long series of papers by T. Ohsawa. The recent achievement that we want to point out is that the surjectivity property holds true for restriction morphisms to non necessarily reduced subvarieties, provided these are defined as zero varieties of multiplier ideal sheaves. The new idea involved to approach the existence problem is to make use of L 2 approximation in the Bochner-Kodaira technique. The extension results hold under curvature conditions that look pretty optimal. However, a major unsolved problem is to obtain natural (and hopefully best possible) L 2 estimates for the extension in the case of non reduced subvarieties -- the case when Y has singularities or several irreducible components is also a substantial issue.Comment: arXiv admin note: text overlap with arXiv:1703.00292, arXiv:1510.0523

    Numerically flat Higgs vector bundles

    Full text link
    After providing a suitable definition of numerical effectiveness for Higgs bundles, and a related notion of numerical flatness, in this paper we prove, together with some side results, that all Chern classes of a Higgs-numerically flat Higgs bundle vanish, and that a Higgs bundle is Higgs-numerically flat if and only if it is has a filtration whose quotients are flat stable Higgs bundles. We also study the relation between these numerical properties of Higgs bundles and (semi)stability.Comment: 11 page

    Green Currents for Meromorphic Maps of Compact K\"ahler Manifolds

    Full text link
    We consider the dynamics of meromorphic maps of compact K\"ahler manifolds. In this work, our goal is to locate the non-nef locus of invariant classes and provide necessary and sufficient conditions for existence of Green currents in codimension one.Comment: Statement of Theorem 1.5 is slightly improved. Proposition 5.2 and Theorem 5.3 are adde

    Towards the Green-Griffiths-Lang conjecture

    Full text link
    The Green-Griffiths-Lang conjecture stipulates that for every projective variety X of general type over C, there exists a proper algebraic subvariety of X containing all non constant entire curves f : C \rightarrow X. Using the formalism of directed varieties, we prove here that this assertion holds true in case X satisfies a strong general type condition that is related to a certain jet-semistability property of the tangent bundle TX . We then give a sufficient criterion for the Kobayashi hyperbolicity of an arbitrary directed variety (X,V). This work is dedicated to the memory of Professor Salah Baouendi.Comment: version 2 has been expanded and improved (15 pages

    Del Pezzo surfaces and local inequalities

    Full text link
    I prove new local inequality for divisors on smooth surfaces, describe its applications, and compare it to a similar local inequality that is already known by experts.Comment: 13 pages; to appear in the proceedings of the conference "Groups of Automorphisms in Birational and Affine Geometry", Levico Terme (Trento), 201

    Local syzygies of multiplier ideals

    Full text link
    In recent years, multiplier ideals have found many applications in local and global algebraic geometry. Because of their importance, there has been some interest in the question of which ideals on a smooth complex variety can be realized as multiplier ideals. Other than integral closure no local obstructions have been known up to now, and in dimension two it was established by Favre-Jonsson and Lipman-Watanabe that any integrally closed ideal is locally a multiplier ideal. We prove the somewhat unexpected result that multiplier ideals in fact satisfy some rather strong algebraic properties involving higher syzygies. It follows that in dimensions three and higher, multiplier ideals are very special among all integrally closed ideals.Comment: 8 page

    Interpolation in non-positively curved K\"ahler manifolds

    Full text link
    We extend to any simply connected K\"ahler manifold with non-positive sectional curvature some conditions for interpolation in C\mathbb{C} and in the unit disk given by Berndtsson, Ortega-Cerd\`a and Seip. The main tool is a comparison theorem for the Hessian in K\"ahler geometry due to Greene, Wu and Siu, Yau.Comment: 9 pages, Late

    Effective algebraic degeneracy

    Full text link
    We prove that any nonconstant entire holomorphic curve from the complex line C into a projective algebraic hypersurface X = X^n in P^{n+1}(C) of arbitrary dimension n (at least 2) must be algebraically degenerate provided X is generic if its degree d = deg(X) satisfies the effective lower bound: d larger than or equal to n^{{(n+1)}^{n+5}}

    Partial pluricomplex energy and integrability exponents of plurisubharmonic functions

    Get PDF
    We give a sufficient condition on the Monge-Amp\`ere mass of a plurisubharmonic function uu for exp(2u)\exp (- 2 u) to be locally integrable. This gives a pluripotential theoretic proof of a theorem by J-P. Demailly.Comment: extended version with new results and more application
    corecore