37 research outputs found

    Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action

    No full text
    The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.Science, Faculty ofNon UBCChemistry, Department ofReviewedFacultyResearche

    ATP-Dependent Persister Formation in Escherichia coli

    No full text
    Persisters are dormant variants that form a subpopulation of cells tolerant to antibiotics. Persisters are largely responsible for the recalcitrance of chronic infections to therapy. In Escherichia coli, one widely accepted model of persister formation holds that stochastic accumulation of ppGpp causes activation of the Lon protease that degrades antitoxins; active toxins then inhibit translation, resulting in dormant, drug-tolerant persisters. We found that various stresses induce toxin-antitoxin (TA) expression but that induction of TAs does not necessarily increase persisters. The 16S rRNA promoter rrnB P1 was proposed to be a persister reporter and an indicator of toxin activation regulated by ppGpp. Using fluorescence-activated cell sorting (FACS), we confirmed the enrichment for persisters in the fraction of rrnB P1-gfp dim cells; however, this is independent of toxin-antitoxins. rrnB P1 is coregulated by ppGpp and ATP. We show that rrnB P1 can report persisters in a relA/spoT deletion background, suggesting that rrnB P1 is a persister marker responding to ATP. Consistent with this finding, decreasing the level of ATP by arsenate treatment causes drug tolerance. Lowering ATP slows translation and prevents the formation of DNA double-strand breaks upon fluoroquinolone treatment. We conclude that variation in ATP levels leads to persister formation by decreasing the activity of antibiotic targets

    ATP-Dependent Persister Formation in Escherichia coli

    Get PDF
    Persisters are dormant variants that form a subpopulation of cells tolerant to antibiotics. Persisters are largely responsible for the recalcitrance of chronic infections to therapy. In Escherichia coli, one widely accepted model of persister formation holds that stochastic accumulation of ppGpp causes activation of the Lon protease that degrades antitoxins; active toxins then inhibit translation, resulting in dormant, drug-tolerant persisters. We found that various stresses induce toxin-antitoxin (TA) expression but that induction of TAs does not necessarily increase persisters. The 16S rRNA promoter rrnB P1 was proposed to be a persister reporter and an indicator of toxin activation regulated by ppGpp. Using fluorescence-activated cell sorting (FACS), we confirmed the enrichment for persisters in the fraction of rrnB P1-gfp dim cells; however, this is independent of toxin-antitoxins. rrnB P1 is coregulated by ppGpp and ATP. We show that rrnB P1 can report persisters in a relA/spoT deletion background, suggesting that rrnB P1 is a persister marker responding to ATP. Consistent with this finding, decreasing the level of ATP by arsenate treatment causes drug tolerance. Lowering ATP slows translation and prevents the formation of DNA double-strand breaks upon fluoroquinolone treatment. We conclude that variation in ATP levels leads to persister formation by decreasing the activity of antibiotic targets

    Dual targeting of the class V lanthipeptide antibiotic cacaoidin

    No full text
    Summary: Antibiotic resistance is reaching alarming levels, demanding for the discovery and development of antibiotics with novel chemistry and mechanisms of action. The recently discovered antibiotic cacaoidin combines the characteristic lanthionine residue of lanthipeptides and the linaridin-specific N-terminal dimethylation in an unprecedented N-dimethyl lanthionine ring, being therefore designated as the first class V lanthipeptide (lanthidin). Further notable features include the high D-amino acid content and a unique disaccharide substitution attached to the tyrosine residue. Cacaoidin shows antimicrobial activity against gram-positive pathogens and was shown to interfere with peptidoglycan biosynthesis. Initial investigations indicated an interaction with the peptidoglycan precursor lipid IIPGN as described for several lanthipeptides. Using a combination of biochemical and molecular interaction studies we provide evidence that cacaoidin is the first natural product demonstrated to exhibit a dual mode of action combining binding to lipid IIPGN and direct inhibition of cell wall transglycosylases

    Aftereffects and sense of presence in virtual environments: Formulation of a research and development agenda

    No full text
    This report represents a committee summary of the current state of knowledge regarding aftereffects and sense of presence in virtual environments (VEs). The work presented in this article, and the proposed research agenda, are the result of a special session that was set up in the framework of the Seventh International Conference on Human Computer Interaction. Recommendations were made by the committee regarding research needs in aftereffects and sense of presence, and, where possible, priorities were suggested. The research needs were structured in terms of the short, medium, and long term and, if followed, should lead toward the effective use of VE technology. The 2 most critical research issues identified were (a) standardization and use of measurement approaches for aftereffects and (b) identification and prioritization of sensorimotor discordances that drive aftereffects. Identification of aftereffects countermeasures (i.e., techniques to assist users in readily transitioning between the real and virtual worlds), reduction of system response latencies, and improvements in tracking technology were also thought to be of critical importance
    corecore