15,225 research outputs found

    Exact Green's Function of the reversible diffusion-influenced reaction for an isolated pair in 2D

    Full text link
    We derive an exact Green's function of the diffusion equation for a pair of spherical interacting particles in 2D subject to a back-reaction boundary condition.Comment: 6 pages, 1 Figur

    Scavenger 0.1: A Theorem Prover Based on Conflict Resolution

    Full text link
    This paper introduces Scavenger, the first theorem prover for pure first-order logic without equality based on the new conflict resolution calculus. Conflict resolution has a restricted resolution inference rule that resembles (a first-order generalization of) unit propagation as well as a rule for assuming decision literals and a rule for deriving new clauses by (a first-order generalization of) conflict-driven clause learning.Comment: Published at CADE 201

    Dynamical Stability of Witten Rings

    Get PDF
    The dynamical stability of cosmic rings, or vortons, is investigated for the particular equation of state given by the Witten bosonic model. It is found that there exists a finite range of the state parameter for which the vorton states are actually stable against dynamical perturbations. Inclusion of the electromagnetic self action into the equation of state slightly shrinks the stability region but otherwise yields no qualitative difference. If the Witten bosonic model represents a good approximation for more realistic string models, then the cosmological vorton excess problem can only be solved by assuming either that strings are formed at low energy scales or that some quantum instability may develop at a sufficient rate.Comment: 11 pages, LaTeX-ReVTeX (v.3), 2 figures available upon request, DAMTP R-94/1

    Study of the Science, Economics, and Perceptions Related to Implementation of Traditional and Innovative Stormwater Best Management Practices in Coastal South Carolina

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Demonstrating Operating System Principles via Computer Forensics Exercises

    Get PDF
    We explore the feasibility of sparking student curiosity and interest in the core required MIS operating systems course through inclusion of computer forensics exercises into the course. Students were presented with two in-class exercises. Each exercise demonstrated an aspect of the operating system, and each exercise was written as a computer forensics investigation. Students were asked to indicate their perception of the practicality of the course material before and after completing the exercises. Based upon a t-test, we conclude that students find the course material to be of greater practical significance when course materials are linked to forensics topics

    Quantum Games

    Full text link
    In these lecture notes we investigate the implications of the identification of strategies with quantum operations in game theory beyond the results presented in [J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett. 83, 3077 (1999)]. After introducing a general framework, we study quantum games with a classical analogue in order to flesh out the peculiarities of game theoretical settings in the quantum domain. Special emphasis is given to a detailed investigation of different sets of quantum strategies.Comment: 13 pages (LaTeX), 3 figure

    Recent developments in Vorton Theory

    Get PDF
    This article provides a concise overview of recent theoretical results concerning the theory of vortons, which are defined to be (centrifugally supported) equilibrium configurations of (current carrying) cosmic string loops. Following a presentation of the results of work on the dynamical evolution of small circular string loops, whose minimum energy states are the simplest examples of vortons, recent order of magnitude estimates of the cosmological density of vortons produced in various kinds of theoretical scenario are briefly summarised.Comment: 6 pages Latex. Contribution to 1996 Cosmology Meeting, Peyresq, Franc

    Dark Energy and Modified Gravity

    Get PDF
    Despite two decades of tremendous experimental and theoretical progress, the riddle of the accelerated expansion of the Universe remains to be solved. On the experimental side, our understanding of the possibilities and limitations of the major dark energy probes has evolved; here we summarize the major probes and their crucial challenges. On the theoretical side, the taxonomy of explanations for the accelerated expansion rate is better understood, providing clear guidance to the relevant observables. We argue that: i) improving statistical precision and systematic control by taking more data, supporting research efforts to address crucial challenges for each probe, using complementary methods, and relying on cross-correlations is well motivated; ii) blinding of analyses is difficult but ever more important; iii) studies of dark energy and modified gravity are related; and iv) it is crucial that R&D for a vibrant dark energy program in the 2030s be started now by supporting studies and technical R&D that will allow embryonic proposals to mature. Understanding dark energy, arguably the biggest unsolved mystery in both fundamental particle physics and cosmology, will remain one of the focal points of cosmology in the forthcoming decade.Comment: 5 pages + references; science white paper submitted to the Astro2020 decadal surve

    Radiative Torques on Interstellar Grains: II. Grain Alignment

    Full text link
    Radiative torques on irregular dust grains, in addition to producing superthermal rotation, play a direct dynamical role in the alignment of interstellar dust with the local magnetic field. The equations governing the orientation of spinning, precessing grains are derived; H_2 formation torques and paramagnetic dissipation are included in the dynamics. Stationary solutions (constant alignment angle and spin rate) are found; these solutions may be stable ("attractors") or unstable ("repellors"). The equations of motion are numerically integrated for three exemplary irregular grain geometries, exposed to anisotropic radiation with the spectrum of interstellar starlight. The resulting "trajectory maps" are classified as "noncyclic", "semicyclic", or "cyclic", with examples of each given. We find that radiative torques result in rapid grain alignment, even in the absence of paramagnetic dissipation. It appears that radiative torques due to starlight can account for the observed alignment of interstellar grains with the Galactic magnetic field.Comment: 34 pages, 21 eps figures, uses aaspp4.sty . Submitted to Ap.
    corecore