702 research outputs found
Interferometric sensing of the tilt angle of a Gaussian beam
We investigate interferometric techniques to estimate the deflection angle of
an optical beam and compare them to the direct detection of the beam
deflection. We show that quantum metrology methods lead to a unifying treatment
for both single photons and classical fields. Using the Fisher information to
assess the precision limits of the interferometric schemes, we show that the
precision can be increased by exploiting the initial transverse displacement of
the beam. This gain, which is present for both Sagnac and Mach-Zehnder-like
configurations, can be considerable when compared to non-interferometric
methods. In addition to the fundamental increase in precision, the
interferometric schemes have the technical advantage that (i) the precision
limits can be saturated by a sole polarization measurement on the field, and
that (ii) the detection system can be placed at any longitudinal position along
the beam. We also consider position-dependent polarization measurements, and
show that in this case the precision increases with the propagation distance,
as well as the initial transverse displacement.Comment: Comments are welcom
Experimental Observation of Environment-induced Sudden Death of Entanglement
We demonstrate the difference between local, single-particle dynamics and
global dynamics of entangled quantum systems coupled to independent
environments. Using an all-optical experimental setup, we show that, while the
environment-induced decay of each system is asymptotic, quantum entanglement
may suddenly disappear. This "sudden death" constitutes yet another distinct
and counter-intuitive trait of entanglement.Comment: 4 pages, 4 figure
Universal quantum computation in decoherence-free subspaces with hot trapped-ions
We consider interactions that generate a universal set of quantum gates on
logical qubits encoded in a collective-dephasing-free subspace, and discuss
their implementations with trapped ions. This allows for the removal of the
by-far largest source of decoherence in current trapped-ion experiments,
collective dephasing. In addition, an explicit parametrization of all two-body
Hamiltonians able to generate such gates without the system's state ever
exiting the protected subspace is provided.Comment: 8 pages, 1 figur
Quantum Non-Demolition Test of Bipartite Complementarity
We present a quantum circuit that implements a non-demolition measurement of
complementary single- and bi-partite properties of a two-qubit system:
entanglement and single-partite visibility and predictability. The system must
be in a pure state with real coefficients in the computational basis, which
allows a direct operational interpretation of those properties. The circuit can
be realized in many systems of interest to quantum information.Comment: 4 pages, 2 figure
Direct measurement of finite-time disentanglement induced by a reservoir
We propose a method for directly probing the dynamics of disentanglement of
an initial two-qubit entangled state, under the action of a reservoir. We show
that it is possible to detect disentanglement, for experimentally realizable
examples of decaying systems, through the measurement of a single observable,
which is invariant throughout the decay. The systems under consideration may
lead to either finite-time or asymptotic disentanglement. A general
prescription for measuring this observable, which yields an operational meaning
to entanglement measures, is proposed, and exemplified for cavity quantum
electrodynamics and trapped ions.Comment: 4 pages, 2 figure
Laplacian growth with separately controlled noise and anisotropy
Conformal mapping models are used to study competition of noise and
anisotropy in Laplacian growth. For that, a new family of models is introduced
with the noise level and directional anisotropy controlled independently.
Fractalization is observed in both anisotropic growth and the growth with
varying noise. Fractal dimension is determined from cluster size scaling with
its area. For isotropic growth we find d = 1.7, both at high and low noise. For
anisotropic growth with reduced noise the dimension can be as low as d = 1.5
and apparently is not universal. Also, we study fluctuations of particle areas
and observe, in agreement with previous studies, that exceptionally large
particles may appear during the growth, leading to pathologically irregular
clusters. This difficulty is circumvented by using an acceptance window for
particle areas.Comment: 13 pages, 15 figure
Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring
The persistent current through a quantum dot inserted in a mesoscopic ring of
length L is studied. A cluster representing the dot and its vicinity is exactly
diagonalized and embedded into the rest of the ring. The Kondo resonance
provides a new channel for the current to flow. It is shown that due to scaling
properties, the persistent current at the Kondo regime is enhanced relative to
the current flowing either when the dot is at resonance or along a perfect ring
of same length. In the Kondo regime the current scales as , unlike
the scaling of a perfect ring. We discuss the possibility of detection
of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure
Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment
We report on an experimental investigation of the dynamics of entanglement
between a single qubit and its environment, as well as for pairs of qubits
interacting independently with individual environments, using photons obtained
from parametric down-conversion. The qubits are encoded in the polarizations of
single photons, while the interaction with the environment is implemented by
coupling the polarization of each photon with its momentum. A convenient Sagnac
interferometer allows for the implementation of several decoherence channels
and for the continuous monitoring of the environment. For an
initially-entangled photon pair, one observes the vanishing of entanglement
before coherence disappears. For a single qubit interacting with an
environment, the dynamics of complementarity relations connecting single-qubit
properties and its entanglement with the environment is experimentally
determined. The evolution of a single qubit under continuous monitoring of the
environment is investigated, demonstrating that a qubit may decay even when the
environment is found in the unexcited state. This implies that entanglement can
be increased by local continuous monitoring, which is equivalent to
entanglement distillation. We also present a detailed analysis of the transfer
of entanglement from the two-qubit system to the two corresponding
environments, between which entanglement may suddenly appear, and show
instances for which no entanglement is created between dephasing environments,
nor between each of them and the corresponding qubit: the initial two-qubit
entanglement gets transformed into legitimate multiqubit entanglement of the
Greenberger-Horne-Zeilinger (GHZ) type.Comment: 15 pages, 14 figures; only .ps was working, now .pdf is also
availabl
- …
